Skip to main content
Log in

Regulatory Sequences for Constitutive, Tissue-Specific, and Induced Expression of Transgenes in Ornamental Plants

  • REVIEWS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Genetic engineering allows for an extension beyond the limits of a species' natural variability. This enables the production of ornamental plants with novel colors and shapes of flowers, enhanced resistance, and a complex of characteristics gaining aesthetic and economic advantages. As a rule, success in achievement of desirable effects requires changes in the expression patterns of particular genes. A key regulatory element determining the level and tissue and temporal specificity in gene expression is a promoter. Therefore, an appropriate promoter must be chosen in the first place to build the planned structures of genetic constructs for transgene expression in plants. In recent years, many novel constitutive, tissue-specific, and induced promoters of plant origin have been explored. They may broaden advancements for derivation of novel forms and cultivars by means of a strictly directed expression of the transferred genes. The review discusses literary data on promoter application to biotechnology for the cases of ornamental plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Azadi, P., Bagheri, H., Nalousi, A.M., Nazari, F., and Chandler, S.F., Current status and biotechnological advances in genetic engineering of ornamental plants, Biotechnol. Adv., 2016, vol. 34, pp. 1073–1090.

    Article  PubMed  Google Scholar 

  2. Noman, A., Aqeel, M., Deng, J., Khalid, N., Sanaullah, T., and Shuilin, H., Biotechnological advancements for improving floral attributes in ornamental plants, Front. Plant Sci., 2017, vol. 8: 530. https://doi.org/10.3389/fpls.2017.00530

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hernandez-Garcia, C. and Finer, J.J., Identification and validation of promoters and cis-acting regulatory elements, Plant Sci., 2014, vols. 217–218, pp. 109–119.

  4. Pandiarajan, R. and Grover, A., In vivo promoter engineering in plants: are we ready? Plant Sci., 2018, vol. 277, pp. 132–138.

    Article  CAS  PubMed  Google Scholar 

  5. Rose, A.B., Emami, S., Bradnam, K., and Korf, I., Evidence for a DNA-based mechanism of intron-mediated enhancement, Front. Plant Sci., 2011, vol. 2: 98. https://doi.org/10.3389/fpls.2011.00098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gallegos, J.E. and Rose, A.B., The enduring mystery of intron-mediated enhancement, Plant Sci., 2015, vol. 237, pp. 8–15.

    Article  CAS  PubMed  Google Scholar 

  7. Grant, T.N., De La Torre, C.M., Zhang, N., and Finer, J.J., Synthetic introns help identify sequences in the 5' UTR intron of the Glycine max polyubiquitin (Gm-ubi) promoter that give increased promoter activity, Planta, 2017, vol. 245, pp. 849–860.

    Article  CAS  PubMed  Google Scholar 

  8. Matsumoto, T.K., Keith, L.M., Cabos, R.Y., Suzuki, J.Y., Gonsalves, D., and Thilmony, R., Screening promoters for Anthurium transformation using transient expression, Plant Cell Rep., 2013, vol. 32, pp. 443–451.

    Article  CAS  PubMed  Google Scholar 

  9. Wilmink, A., van de Ven, B.C.E., and Dons, J.J.M., Activity of constitutive promoters in various species from the Liliaceae, Plant Mol. Biol., 1995, vol. 28, pp. 949–955.

    Article  CAS  PubMed  Google Scholar 

  10. Kamo, K., Kim, A.Y., Park, S.H., and Joung, Y.H., The 5' UTR-intron of the Gladiolus polyubiquitin promoter GUBQ1 enhances translation efficiency in Gl-adiolus and Arabidopsis, BMC Plant Biol., 2012, vol. 12: 79. https://doi.org/10.1186/1471-2229-12-79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Peremarti, A., Twyman, R.M., and Gómez-Galera, S., Promoter diversity in multigene transformation, Plant Mol. Biol., 2010, vol. 73, pp. 363–378.

    Article  CAS  PubMed  Google Scholar 

  12. Smirnova, O.G. and Kochetov, A.V., Wheat promoter sequences for transgene expression, Vavilov J. Genet. Breed., 2012, vol. 16, pp. 224–231.

    Google Scholar 

  13. Dutt, M., Dhekney, S.A., Soriano, L., Kandel, R., and Grosser, J.W., Temporal and spatial control of gene expression in horticultural crops, Hortic. Res., 2014, vol. 1: 14047. https://doi.org/10.1038/hortres.2014.47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Smirnova, O.G. and Kochetov, A.V., Plant gene promoters responsive to pathogen invasion, Vavilov J. Genet. Breed., 2014, vol. 18, no. 4/1, pp. 765–775.

  15. Nuccio, M.L., A brief history of promoter development for use in transgenic maize applications, Methods Mol. Biol., 2018, vol. 1676, pp. 61–93.

    Article  CAS  PubMed  Google Scholar 

  16. Smirnova, O.G., Ibragimova, S.S., and Kochetov, A.V., Simple database to select promoters for plant transgenesis, Transgenic Res., 2012, vol. 21, pp. 429–437.

    Article  CAS  PubMed  Google Scholar 

  17. Wen, Z., Yang, Y., Zhang, J., Wang, X., Singer, S., Liu, Z., Yang, Y., Yan, G., and Liu, Z., Highly interactive nature of flower-specific enhancers and promoters, and its potential impact on tissue-specific expression and engineering of multiple genes or agronomic traits, Plant Biotechnol. J., 2014, vol. 12, pp. 951–962.

    Article  CAS  PubMed  Google Scholar 

  18. Dalal, J., Simultaneous analysis of multiple promoters: an application of the PC-GW binary vector series, in Plant Synthetic Promoters. Methods in Molecular B-iology, Hehl, R., Ed., New York: Humana Press, 2016, vol. 1482, pp. 189–218.

    Google Scholar 

  19. Ganguly, M., Roychoudhury, A., Sarkar, S.N., Sengupta, D.N., Datta, S.K., and Datta, K., Inducibility of three salinity/abscisic acid-regulated promoters in transgenic rice with gusa reporter gene, Plant Cell Rep., 2011, vol. 30, pp. 1617–1625.

    Article  CAS  PubMed  Google Scholar 

  20. Ge, H., Li, X., Chen, S., Zhang, M., Liu, Z., Wang, J., Li, X., and Yang, Y., The expression of CARK1 or RCAR11 driven by synthetic promoters increases drought tolerance in Arabidopsis thaliana, Int. J. Mol. Sci., 2018, vol. 19: e1945. https://doi.org/10.3390/ijms19071945

    Article  CAS  PubMed  Google Scholar 

  21. Kamo, K., Jordan, R., Guaragna, M.A., Hsu, H.T., and Ueng, P., Resistance to Cucumber mosaic virus in Gladiolus plants transformed with either a defective replicase or coat protein subgroup ii gene from Cuc-umber mosaic virus, Plant Cell Rep., 2010, vol. 29, pp. 695–704.

    Article  CAS  PubMed  Google Scholar 

  22. Azadi, P., Otang, N.V., Supaporn, H., Khan, R.S., Chin, D.P., Nakamura, I., and Mii, M., Increased resistance to Cucumber mosaic virus (CMV) in Lilium transformed with a defective CMV replicase gene, B-iotechnol. Lett., 2011, vol. 33, pp. 1249–1255.

    Article  CAS  Google Scholar 

  23. Sun, D., Zhang, X., Li, S., Jiang, C.Z., Zhang, Y., and Niu, L., LrABCF1, a GCN-type ATP-binding cassette transporter from Lilium regale, is involved in defense responses against viral and fungal pathogens, Planta, 2016, vol. 244, pp. 1185–1199.

    Article  CAS  PubMed  Google Scholar 

  24. Núñez de Cáceres González, F.F., Davey, M.R., C-ancho Sanchez, E., and Wilson, Z.A., Conferred resistance to Botrytis cinerea in Lilium by overexpression of the RCH10 chitinase gene, Plant Cell Rep., 2015, vol. 34, pp. 1201–1209.

  25. Vieira, P., Wantoch, S., Lilley, C.J., Chitwood, D.J., Atkinson, H.J., and Kamo, K., Expression of a cystatin transgene can confer resistance to root lesion nematodes in Lilium longiflorum cv. 'Nellie White’, Tra-nsgenic Res., 2015, vol. 24, pp. 421–432.

    Article  CAS  Google Scholar 

  26. Kui, L., Chen, H., Zhang, W., He, S., Xiong, Z., Zhang, Y., Yan, L., Zhong, C., He, F., Chen, J., Zeng, P., Zhang, G., Yang, S., Dong, Y., Wang, W., and Cai, J., Building a genetic manipulation tool box for orchid biology: identification of constitutive promoters and application of CRISPR/Cas9 in the orchid, Dendrobium officinale, Front. Plant Sci., 2017, vol. 7: 2036. https://doi.org/10.3389/fpls.2016.02036

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kamo, K., Aebig, J., Guaragna, M.A., James, C., Hsu, H.T., and Jordan, R., Gladiolus plants transformed with single-chain variable fragment antibodies to cucumber mosaic virus, Plant Cell Tissue Organ Cult., 2012, vol. 110, pp. 13–21.

    Article  CAS  Google Scholar 

  28. Joung, Y.H. and Kamo, K., Expression of a polyubiquitin promoter isolated from Gladiolus, Plant Cell Rep., 2006, vol. 25, pp. 1081–1088.

    Article  CAS  PubMed  Google Scholar 

  29. Kamo, K., Joung, Y.H., and Green, K., GUS expression in Gladiolus plants controlled by two Gladiolus ubiquitin promoters, Floriculture Ornamental Biotech., 2009, vol. 3, pp. 10–14.

    Google Scholar 

  30. Petty, L.M., Pharberd, N., Carré, I.A., Thomas, B., and Jackson, S.D., Expression of the Arabidopsis gai gene under its own promoter causes a reduction in plant height in chrysanthemum by attenuation of the gibberellin response, Plant Sci., 2003, vol. 164, pp. 175–182.

    Article  CAS  Google Scholar 

  31. Lütken, H., Jensen, L.S., Topp, S.H., Mibus, H., Müller, R., and Rasmussen, S.K., Production of compact plants by overexpression of AtSHI in the ornamental Kalanchoë, Plant Biotechnol. J., 2010, vol. 8, pp. 211–222.

  32. Hong, J.K., Suh, E.J., Kwon, S.J., Lee, S.B., Kim, J.A., Lee, S.I., and Lee, Y.H., Promoter of chrysanthemum actin confers high-level constitutive gene expression in Arabidopsis and chrysanthemum, Sci. Hortic., 2016, vol. 211, pp. 8–18.

    Article  CAS  Google Scholar 

  33. Annadana, S., Mlynárová, L., Udayakumar, M., and de Jong, J., The potato Lhca3.St.1 promoter confers high and stable transgene expression in chrysanthemum, in contrast to CaMV-based promoters, Mol. Breed., 2001, vol. 8, pp. 335–344.

    Article  CAS  Google Scholar 

  34. Aida, R., Ohira, K., Tanaka, Y., Kishimoto, S., Shibata, M., and Ohmiya, A., Efficient transgene expression in chrysanthemum, Dendranthema grandiflorum (R-amat.) Kitamura, by using the promoter of a gene for chrysanthemum chlorophyll-a/b-binding protein, Breed. Sci., 2004, vol. 54, pp. 51–58.

    Article  CAS  Google Scholar 

  35. Outchkourov, N.S., Peters, J., de Jong, J., Rademakers, W., and Jongsma, M.A., The promoter-terminator of chrysanthemum rbcS1 directs very high expression levels in plants, Planta, 2003, vol. 216, pp. 1003–1012.

    CAS  PubMed  Google Scholar 

  36. Aida, R., Nagaya, S., Yoshida, K., Kishimoto, S., Shibata, M., and Ohmiya, A., Efficient transgene expression in chrysanthemum, Chrysanthemum morifolium Ramat., with the promoter of a gene for tobacco elongation factor 1[alpha] protein, JARQ, 2005, vol. 39, pp. 269–274.

    Article  CAS  Google Scholar 

  37. Hong, B., Tong, Z., Ma, C., Kasuga, M., Yamaguchi-Shinozaki, K., and Gao, J., Heterologous expression of the AtDREB1A gene in chrysanthemum increases drought and salt stress tolerance, Sci. China C Life Sci., 2006, vol. 49, pp. 436–445.

    Article  CAS  PubMed  Google Scholar 

  38. Sakamoto, H., Maruyama, K., Sakuma, Y., Meshi, T., Iwabuchi, M., Shinozaki, K., and Yamaguchi-Shinozaki, K., Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions, Plant Physiol., 2004, vol. 136, pp. 2734–2746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen, H.C., Hwang, S.G., Chen, S.M., Shii, C.T., and Cheng, W.H., ABA-mediated heterophylly is regulated by differential expression of 9-cis-epoxycarotenoid dioxygenase 3 in lilies, Plant Cell Physiol., 2011, vol. 52, pp. 1806–1821.

    Article  CAS  PubMed  Google Scholar 

  40. Clark, D.G., Dervinis, C., Barrett, J.E., Klee, H., and Jones, M., Drought-induced leaf senescence and horticultural performance of transgenic PSAG12-IPT petunias, J. Am. Soc. Hortic. Sci., 2004, vol. 129, pp. 93–99.

    Article  CAS  Google Scholar 

  41. Khodakovskaya, M., Li, Y., Li, J., Vankova, R., Malbeck, J., and McAvoy, R., Effects of cor15a-IPT gene expression on leaf senescence in transgenic Petunia x hybrida and Dendranthema x grandiflorum, J. Exp. Bot., 2005, vol. 56, pp. 1165–1175.

    Article  CAS  PubMed  Google Scholar 

  42. Bhuiyan, N.H., Hamada, A., Yamada, N., Rai, V., Hibino, T., and Takabe, T., Regulation of betaine synthesis by precursor supply and choline monooxygenase expression in Amaranthus tricolor, J. Exp. Bot., 2007, vol. 58, pp. 4203–4212.

    Article  CAS  PubMed  Google Scholar 

  43. Chang, H., Jones, M.L., Banowetz, G.M., and Clark, D.G., Overproduction of cytokinins in petunia flowers transformed with P(SAG12)-IPT delays corolla senescence and decreases sensitivity to ethylene, Plant Physiol., 2003, vol. 132, pp. 2174–2183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. García-Sogo, B., Pineda, B., Roque, E., Antón, T., Atarés, A., Borja, M., Beltrán, J.P., Moreno, V., and Cañas, L.A., Production of engineered long-life and male sterile Pelargonium plants, BMC Plant Biol., 2012, vol. 12: 156. https://doi.org/10.1186/1471-2229-12-156

  45. Lai, Q.X., Bao, Z.Y., Zhu, Z.J., Qian, Q.Q., and Mao, B.Z., Effects of osmotic stress on antioxidant enzymes activities in leaf discs of PSAG12-IPT modified gerbera, J. Zhejiang Univ. Sci. B, 2007, vol. 8, pp. 458–464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zakizadeh, H., Lütken, H., Sriskandarajah, S., Serek, M., and Müller, R., Transformation of miniature potted rose (Rosa hybrida cv. 'Linda') with P(SAG12)-ipt gene delays leaf senescence and enhances resistance to exogenous ethylene, Plant Cell Rep., 2013, vol. 32, pp. 195–205.

    Article  CAS  PubMed  Google Scholar 

  47. Faiss, M., Zalubìlová, J., Strnad, M., and Schmülling, T., Conditional transgenic expression of the ipt gene indicates a function for cytokinins in paracrine signaling in whole tobacco plants, Plant J., 1997, vol. 12, pp. 401–415.

    Article  CAS  PubMed  Google Scholar 

  48. Zeng, X.F. and Zhao, D.G., Expression of IPT in Asakura-sanshoo (Zanthoxylum piperitum (L.) DC. f. inerme Makino) alters tree architecture, delays leaf senescence, and changes leaf essential oil composition, Plant Mol. Biol. Rep., 2016, vol. 34, pp. 649–658.

    Article  CAS  Google Scholar 

  49. Xu, X., Jiang, C.Z., Donnelly, L., and Reid, M.S., Functional analysis of a RING domain ankyrin repeat protein that is highly expressed during flower senescence, J. Exp. Bot., 2007, vol. 58, pp. 3623–3630.

    Article  CAS  PubMed  Google Scholar 

  50. Gubrium, E.K., Clevenger, D.J., Clark, D.G., Barrett, J.E., and Nell, T.A., Reproduction and horticultural performance of transgenic ethylene in sensitive petunias, J. Am. Soc. Hort. Sci., 2000, vol. 125, pp. 277–281.

    Article  Google Scholar 

  51. Bovy, A.G., Angenent, G.C., Dons, H.J.M., and van Altvorst, A.C., Heterologous expression of the Arabidopsis etr1-1 allele inhibits the senescence of carnation flowers, Mol. Breed., 1999, vol. 5, pp. 301–308.

    Article  CAS  Google Scholar 

  52. Sanikhani, M., Mibus, H., Stummann, B.M., and Serek, M., Kalanchoe blossfeldiana plants expressing the Arabidopsis etr1-1 allele show reduced ethylene sensitivity, Plant Cell Rep., 2008, vol. 27, pp. 729–737.

    Article  CAS  PubMed  Google Scholar 

  53. Baker, S.S., Wilhelm, K.S., and Thomashow, M.F., The 5'-region of Arabidopsis thaliana cor15a has c-is‑acting elements that confer cold-, drought- and ABA-regulated gene expression, Plant Mol. Biol., 1994, vol. 24, pp. 701–713.

    Article  CAS  PubMed  Google Scholar 

  54. Imai, A., Takahashi, S., Nakayama, K., and Satoh, H., The promoter of the carotenoid cleavage dioxygenase 4a-5 gene of Chrysanthemum morifolium (CmCCD4a-5) drives petal-specific transcription of a conjugated gene in the developing flower, J. Plant Physiol., 2013, vol. 170, pp. 1295–1299.

    Article  CAS  PubMed  Google Scholar 

  55. Liu, Y., Lou, Q., Xu, W., Xin, Y., Bassett, C., and Wang, Y., Characterization of a chalcone synthase (CHS) flower-specific promoter from Lilium orential 'Sorbonne', Plant Cell Rep., 2011, vol. 30, pp. 2187–2194.

    Article  CAS  PubMed  Google Scholar 

  56. Kim, D.H., Park, S., Lee, J.Y., Ha, S.H., and Lim, S.H., Enhancing flower color through simultaneous expression of the B-peru and mPAP1 transcription factors under control of a flower-specific promoter, Int. J. Mol. Sci., 2018, vol. 19: e309. https://doi.org/10.3390/ijms19010309

    Article  CAS  PubMed  Google Scholar 

  57. Azuma, M., Morimoto, R., Hirose, M., Morita, Y., Hoshino, A., Iida, S., Oshima, Y., Mitsuda, N., Ohme-Takagi, M., and Shiratake, K., A petal-specific InMYB1 promoter from Japanese morning glory: a useful tool for molecular breeding of floricultural crops, Plant Biotechnol. J., 2016, vol. 14, pp. 354–363.

    Article  CAS  PubMed  Google Scholar 

  58. Boase, M., Brendolise, C., Wang, L., Ngo, H., Espley, R., Hellens, R., Schwinn, K.E., Davies, K.M., and Albert, N.W., Failure to launch: the self-regulating Md-MYB10 R6 gene from apple is active in flowers but not leaves of Petunia, Plant Cell Rep., 2015, vol. 34, pp. 1817–1823.

    Article  CAS  PubMed  Google Scholar 

  59. Brendolise, C., Espley, R.V., Lin-Wang, K., Laing, W., Peng, Y., McGhie, T., Dejnoprat, S., Tomes, S., Hellens, R.P., and Allan, A.C., Multiple copies of a simple MYB-binding site confers trans-regulation by specific flavonoid-related R2R3 MYBs in diverse species, Front. Plant Sci., 2017, vol. 8: 1864. https://doi.org/10.3389/fpls.2017.01864

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lim, S.H., Sohn, S.H., Kim, D.H., Kim, J.K., Lee, J.Y., Kim, Y.M., and Ha, S.H., Use of an anthocyanin production phenotype as a visible selection marker system in transgenic tobacco plant, Plant Bi-otechnol. Rep., 2012, vol. 6, pp. 203–211.

    Article  Google Scholar 

  61. Katsumoto, Y., Fukuchi-Mizutani, M., Fukui, Y., Brugliera, F., Holton, T.A., Karan, M., Nakamura, N., Yonekura-Sakakibara, K., Togami, J., Pigeaire, A., Tao, G.Q., Nehra, N.S., Lu, C.Y., Dyson, B.K., Tsuda, S., et al., Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin, Plant Cell Physiol., 2007, vol. 48, pp. 1589–1600.

    Article  CAS  PubMed  Google Scholar 

  62. Takatsu, Y., Hayashi, M., and Sakuma, F., Transgene inactivation in Agrobacterium-mediated chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) transformants, Plant Biotechnol., 2000, vol. 17, pp. 241–245.

    Article  CAS  Google Scholar 

  63. Noda, N., Aida, R., Kishimoto, S., Ishiguro, K., Fukuchi-Mizutani, M., Tanaka, Y., and Ohmiya, A., Genetic engineering of novel bluer-colored chrysanthemums produced by accumulation of delphinidin-based anthocyanins, Plant Cell Physiol., 2013, vol. 54, pp. 1684–1695.

    Article  CAS  PubMed  Google Scholar 

  64. Brugliera, F., Tao, G.Q., Tems, U., Kalc, G., Mouradova, E., Price, K., Stevenson, K., Nakamura, N., Stacey, I., Katsumoto, Y., Tanaka, Y., and Mason, J.G., Violet/blue chrysanthemums-metabolic engineering of the anthocyanin biosynthetic pathway results in novel petal colors, Plant Cell Physiol., 2013, vol. 54, pp. 1696–1710.

    Article  CAS  PubMed  Google Scholar 

  65. Noda, N., Yoshioka, S., Kishimoto, S., Nakayama, M., Douzono, M., Tanaka, Y., and Aida, R., Generation of blue chrysanthemums by anthocyanin B-ring hydroxylation and glucosylation and its coloration mechanism, Sci. Adv., 2017, vol. 3: e1602785. https://doi.org/10.1126/sciadv.1602785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Van der Meer, I.M., Brouwer, M., Spelt, C.E., Mol, J.N., and Stuitje, A.R., The TACPyAT repeats in the chalcone synthase promoter of Petunia hybrida act as a dominant negative cis-acting module in the control of organ-specific expression, Plant J., 1992, vol. 2, pp. 525–535.

    Article  CAS  PubMed  Google Scholar 

  67. Du, L., Lou, Q., Zhang, X., Jiao, S., Liu, Y., and Wang, Y., Construction of flower-specific chimeric promoters and analysis of their activities in transgenic Torenia, Plant Mol. Biol. Rep., 2014, vol. 32, pp. 234–245.

    Article  CAS  Google Scholar 

  68. Nishihara, M., Shimoda, T., Nakatsuka, T., and Arimura, G., Frontiers of Torenia research: innovative ornamental traits and study of ecological interaction networks through genetic engineering, Plant Methods, 2013, vol. 9: 23. https://doi.org/10.1186/1746-4811-9-23

    Article  PubMed  PubMed Central  Google Scholar 

  69. Annadana, S., Beekwilder, M.J., Kuipers, G., Visser, P.B., Outchkourov, N., Pereira, A., Udayakumar, M., de Jong, J., and Jongsma, M.A., Cloning of the chrysanthemum UEP1 promoter and comparative expression in florets and leaves of Dendranthema grandiflora, Transgenic Res., 2002, vol. 11, pp. 437–445.

    Article  CAS  PubMed  Google Scholar 

  70. Sasaki, K., Yamaguchi, H., Narumi, T., Shikat, M., Oshima, Y., Nakata, M., Mitsuda, N., Ohme-Takagi, M., and Ohtsubo, N., Utilization of a floral organ-expressing AP1 promoter for generation of new floral traits in Torenia fournieri Lind, Plant Biotechnol., 2011, vol. 28, pp. 181–188.

    Article  CAS  Google Scholar 

  71. Tanaka, Y., Oshima, Y., Yamamura, T., Sugiyama, M., Mitsuda, N., Ohtsubo, N., Ohme-Takagi, M., and Terakawa, T., Multi-petal cyclamen flowers produced by AGAMOUS chimeric repressor expression, Sci. Rep., 2013, vol. 3: 2641. https://doi.org/10.1038/srep02641

    Article  PubMed  PubMed Central  Google Scholar 

  72. Narumi, T., Aida, R., Koyama, T., Yamaguchi, H., Sasaki, K., Shikata, M., Nakayama, M., Ohme-Takagi, M., and Ohtsubo, N., Arabidopsis chimeric TCP3 repressor produces novel floral traits in Torenia fournieri and Chrysanthemum morifolium, Plant Biotechnol., 2011, vol. 28, pp. 131–140.

    Article  CAS  Google Scholar 

  73. Sasaki, K., Yamaguchi, H., Kasajima, I., Narumi, T., and Ohtsubo, N., Generation of novel floral traits using a combination of floral organ-specific promoters and a chimeric repressor in Torenia fournieri Lind, Plant Cell Physiol., 2016, vol. 57, pp. 1319–1331.

    Article  CAS  PubMed  Google Scholar 

  74. Kasajima, I., Ohtsubo, N., and Sasaki, K., Combination of Cyclamen persicum Mill. floral gene promoters and chimeric repressors for the modification of ornamental traits in Torenia fournieri Lind, Hortic. Res., 2017, vol. 4: 17008. https://doi.org/10.1038/hortres.2017.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kobayashi, H., Oikawa, Y., Koiwa, H., and Yamamura, S., Flower-specific gene expression directed by the promoter of a chalcone synthase gene from Gentiana triflora in Petunia hybrida, Plant Sci., 1998, vol. 131, pp. 173–180.

    Article  CAS  Google Scholar 

  76. Jeknić, Z., Jeknić, S., Jevremović, S., Subotić, A., and Chen, T.H., Alteration of flower color in Iris germ-anica L. 'Fire Bride’ through ectopic expression of phytoene synthase gene (crtB) from Pantoea agglomerans, Plant Cell Rep., 2014, vol. 33, pp. 1307–1321.

  77. Chiou, C.Y., Wu, K., and Yeh, K.W., Characterization and promoter activity of chromoplast specific carotenoid associated gene (CHRC) from Oncidium Gower Ramsey, Biotechnol. Lett., 2008, vol. 30, pp. 1861–1866.

    Article  CAS  PubMed  Google Scholar 

  78. Chiou, C.Y. and Yeh, K.W., Differential expression of MYB gene (OgMYB1) determines color patterning in floral tissue of Oncidium Gower Ramsey, Plant Mol. Biol., 2008, vol. 66, pp. 379–388.

    Article  CAS  PubMed  Google Scholar 

  79. Gómez, M.D., Beltrán, J.P., and Cañas, L.A., The pea END1 promoter drives anther-specific gene expression in different plant species, Planta, 2004, vol. 219, pp. 967–981.

  80. García-Sogo, B., Pineda, B., Castelblanque, L., Antón, T., Medina, M., Roque, E., Torresi, C., Beltrán, J.P., Moreno, V., and Cañas, L.A., Efficient transformation of Kalanchoe blossfeldiana and production of male-sterile plants by engineered anther ablation, Plant Cell Rep., 2010, vol. 29, pp. 61–77.

  81. Singh, M., Bhalla, P.L., Xu, H., and Singh, M.B., Isolation and characterization of a flowering plant male gametic cell-specific promoter, FEBS Lett., 2003, vol. 542, pp. 47–52.

    Article  CAS  PubMed  Google Scholar 

  82. Lauri, A., Xing, S., Heidmann, I., Saedler, H., and Zachgo, S., The pollen-specific DEFH125 promoter from Antirrhinum is bound in vivo by the MADS-box proteins DEFICIENS and GLOBOSA, Planta, 2006, vol. 224, pp. 61–71.

    Article  CAS  PubMed  Google Scholar 

  83. Hsu, S.W., Liu, M.C., Zen, K.C., and Wang, C.S., Identification of the tapetum/microspore-specific promoter of the pathogenesis-related 10 genes and its regulation in the anther of Lilium longiflorum, Plant Sci., 2014, vols. 215–216, pp. 124–133.

  84. Liu, M.C., Yang, C.S., Yeh, F.L., Wei, C.H., Jane, W.N., Chung, M.C., and Wang, C.S., A novel lily anther-specific gene encodes adhesin-like proteins associated with exine formation during anther development, J. Exp. Bot., 2014, vol. 65, pp. 2023–2037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ueda, K., Ono, M., Iwashita, J., Wabiko, H., and Inoue, M., Generative cell-specific activation of the histone gH2A gene promoter of Lilium longiflorum in tobacco, Sex. Plant Reprod., 2012, vol. 25, pp. 247–255.

    Article  CAS  PubMed  Google Scholar 

  86. Tissier, A., Trichome specific expression: promoters and their applications, in Transgenic Plants—Advances and Limitations, Çiftçi, Y.Ö.,Ed., IntechOpen, 2012, pp. 353–378.

  87. Guitton, Y., Nicole, F., Moja, S., Valot, N., Legrand, S., Jullien, F., and Legendre, L., Differential accumulation of volatile terpene and terpene synthase mRNAs during lavender (Lavandula angustifolia and L. x intermedia) inflorescence development, Physiol. Plant., 2010, vol. 138, pp. 150–163.

    Article  CAS  PubMed  Google Scholar 

  88. Biswas, K.K., Foster, A.J., Aung, T., and Mahmoud, S.S., Essential oil production: relationship with abundance of glandular trichomes in aerial surface of plants, Acta Physiol. Plant., 2009, vol. 31, pp. 13–19.

    Article  CAS  Google Scholar 

  89. Koeduka, T., Orlova, I., Baiga, T.J., Noel, J.P., Dudareva, N., and Pichersky, E., The lack of floral synthesis and emission of isoeugenol in Petunia a-xillaris subsp. parodii is due to a mutation in the iso-eugenol synthase gene, Plant J., 2009, vol. 58, pp. 961–969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sultana, S., Hu, H., Gao, L., Mao, J., Luo, J., Jongsma, M.A., and Wang, C., Molecular cloning and characterization of the trichome specific chrysanthemyl diphosphate/chrysanthemol synthase promoter from Tanacetum cinerariifolium, Sci. Hortic., 2015, vol. 185, pp. 193–199.

    Article  CAS  Google Scholar 

  91. Sampedro, J. and Cosgrove, D.J., The expansin superfamily, Genome Biol., 2005, vol. 6: 242. https://doi.org/10.1186/gb-2005-6-12-242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lü, P., Kang, M., Jiang, X., Dai, F., Gao, J., and Zhang, C., RhEXPA4, a rose expansin gene, modulates leaf growth and confers drought and salt tolerance to Arabidopsis, Planta, 2013, vol. 237, pp. 1547–1559.

  93. Zenoni, S., Fasoli, M., Tornielli, G.B., Dal Santo, S., Sanson, A., de Groot, P., Sordo, S., Citterio, S., Monti, F., and Pezzotti, M., Overexpression of PhEXPA1 increases cell size, modifies cell wall polymer composition and affects the timing of axillary meristem development in Petunia hybrida, New Phytol., 2011, vol. 191, pp. 662–677.

    Article  CAS  PubMed  Google Scholar 

  94. Azeez, A., Sane, A.P., Tripathi, S.K., Bhatnagar, D., and Nath, P., The gladiolus GgEXPA1 is a GA-responsive alpha-expansin gene expressed ubiquitously during expansion of all floral tissues and leaves but repressed during organ senescence, Postharvest Biol. Technol., 2010, vol. 58, pp. 48–56.

    Article  CAS  Google Scholar 

  95. Wang, L., Wang, L., Tan, Q., Fan, Q., Zhu, H., Hong, Z., Zhang, Z., and Duanmu, D., Efficient inactivation of symbiotic nitrogen fixation related genes in Lotus japonicas using CRISPR-Cas9, Front. Plant Sci., 2016, vol. 7: 1333. https://doi.org/10.3389/fpls.2016.01333

    Article  PubMed  PubMed Central  Google Scholar 

  96. Kishi-Kaboshi, M., Aida, R., and Sasaki, K., Generation of gene-edited Chrysanthemum morifolium using multicopy transgenes as targets and markers, Plant Cell Physiol., 2017, vol. 58, pp. 216–226.

    CAS  PubMed  Google Scholar 

  97. Watanabe, K., Kobayashi, A., Endo, M., Sage-Ono, K., Toki, S., and Ono, M., CRISPR/Cas9-mediated mutagenesis of the dihydroflavonol-4-reductase-B (DFR-B) locus in the Japanese morning glory Ipomoea (Pharbitis) nil, Sci. Rep., 2017, vol. 7: 10028. https://doi.org/10.1038/s41598-017-10715-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Shibuya, K., Watanabe, K., and Ono, M., CRISPR/Cas9-mediated mutagenesis of the EPHEMERAL1 locus that regulates petal senescence in Japanese morning glory, Plant Physiol. Biochem., 2018, vol. 131, pp. 53–57.

    Article  CAS  PubMed  Google Scholar 

  99. Kishi-Kaboshi, M., Aida, R., and Sasaki, K., Genome engineering in ornamental plants: current status and future prospects, Plant Physiol. Biochem., 2018, vol. 131, pp. 47–52.

    Article  CAS  PubMed  Google Scholar 

  100. Zhang, N., McHale, L.K., and Finer, J.J., Changes to the core and flanking sequences of G-box elements lead to increases and decreases in gene expression in both native and synthetic soybean promoters, Plant Biotechnol. J., 2018, vol. 17: 724–735. https://doi.org/10.1111/pbi.13010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Jiang, P. and Rausher, M., Two genetic changes in cis-regulatory elements caused evolution of petal spot position in Clarkia, Nat. Plants, 2018, vol. 4, pp. 14–22.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the reviewers for the attentive consideration of the manuscript and critical comments made.

Funding

The work was supported by the budget project no. 0324-2019-0039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. G. Smirnova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Aver’yanov

Abbreviations: CaMV35S—promoter of 35S cauliflower mosaic RNA virus; CHS—chalcone synthase; CMV—cucumber mosaic virus; DFR—dihydroflavonol 4-reductase; DREB—dehydration responsive element binding protein; F3H—flavanone 3-hydroxylase; F3'5'H—flavonoid 3',5'-hydroxylase; GUS—β-glucuronidase; SAG12—senescence-associated gene; SHIshort internodes gene; uidA—β-glucuronidase gene; 5'-UTR—5'-untranslated region.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnova, O.G., Shumny, V.K. & Kochetov, A.V. Regulatory Sequences for Constitutive, Tissue-Specific, and Induced Expression of Transgenes in Ornamental Plants. Russ J Plant Physiol 66, 679–693 (2019). https://doi.org/10.1134/S1021443719050182

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443719050182

Keywords:

Navigation