Skip to main content
Log in

Heterologous expression of the AtDREB1A gene in chrysanthemum increases drought and salt stress tolerance

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

DNA cassette containing an AtDREB1A cDNA and a nos terminator, driven by a cauliflower mosaic 35S promoter, or a stress-inducible rd29A promoter, was transformed into the ground cover chrysanthemum (Dendranthema grandiflorum) ‘Fall Color’ genome. Compared with wild type plants, severe growth retardation was observed in 35S:DREB1A plants, but not in rd29A:DREB1A plants. RT-PCR analysis revealed that, under stress conditions, the DREB1A gene was over-expressed constitutively in 35S:DREB1A plants, but was over-expressed inductively in rd29A:DREB1A plants. The transgenic plants exhibited tolerance to drought and salt stress, and the tolerance was significantly stronger in rd29A:DREB1A plants than in 35S:DREB1A plants. Proline content and SOD activity were increased inductively in rd29A:DREB1A plants than in 35S:DREB1A plants under stress conditions. These results indicate that heterologous AtDREB1A can confer drought and salt tolerance in transgenic chrysanthemum, and improvement of the stress tolerance may be related to enhancement of proline content and SOD activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Teixeira da Silva J A. Chrysanthemum: Advances in tissue culture, cryopreservation, postharvest technology, genetics and transgenic biotechnology. Biotechnol Adv, 2003, 21: 715–766

    Article  PubMed  CAS  Google Scholar 

  2. Dubouzet J G, Sakuma Y, Ito Y, Kasuga M, Dubouzet E G, Miura S, et al. OsDREB genes in rice, Oryza sativa L, encode transcription activators that function in drought-, high-salt-and cold-responsive gene expression. Plant J, 2003, 33: 751–763

    Article  PubMed  CAS  Google Scholar 

  3. Liu Q, Kasuga M, Sakura Y, Abe H, Miura S, Yamaguchi-Shinozaki K, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA-binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression respectively in Arabidopsis. Plant Cell, 1998, 10: 1391–1406

    Article  PubMed  CAS  Google Scholar 

  4. Stockinger E J, Gilmour S J, Thomashow M F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA, 1997, 94: 1035–1040

    Article  PubMed  CAS  Google Scholar 

  5. Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low temperature or high-salt stress. Plant Cell, 1994, 6: 251–264

    Article  PubMed  CAS  Google Scholar 

  6. Zhu J K. Salt and drought stress signal transduction in plants. Ann Rev Plant Biol, 2002, 53: 245–273

    Google Scholar 

  7. Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: Differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol, 2000, 3: 217–223

    PubMed  CAS  Google Scholar 

  8. Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol, 1999, 17: 287–291

    Article  PubMed  CAS  Google Scholar 

  9. Jaglo K R, Kleff S, Amundsen K L, Zhang X, Haake V, Zhang J Z, et al. Components of the Arabidopsis C-repeat/dehydration-responsive element biding factor cold-res-ponse pathway are conserved in Brassica napus, other plant species. Plant Physiol, 2001, 127: 910–917

    Article  PubMed  CAS  Google Scholar 

  10. Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K. A combination of the Arabidopsis DREB1A gene, stress-inducible rd29A promoter improved drought-, low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol, 2004, 45: 346–350

    Article  PubMed  CAS  Google Scholar 

  11. Hsieh T H, Lee J T, Chang Y Y, Chan M T. Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol, 2002, 130: 618–626

    Article  PubMed  CAS  Google Scholar 

  12. Hsieh T H, Lee J T, Yang P T, Chiu L H, Chang Y Y, Wang Y C, Chan M T. Heterologous expression of the Arabidoposis CBF1 gene confers elevated tolerance to chilling, oxidative stresses in transgenic tomato. Plant Physiol, 2002, 129: 1086–1094

    Article  PubMed  CAS  Google Scholar 

  13. Pellegrineschi A, Reynolds M, Pacheco M, Brito R M, Almeraya R, Yamaguchi-Shinozaki K, Hoisigton D. Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome, 2004, 47: 493–500

    Article  PubMed  CAS  Google Scholar 

  14. Wagstaff C, Leverentz M K, Griffiths G, Thomas B, Chanasut U, Stead A D, Rogers H J. Protein degradation during senescence of Alstroemeria petals. J Exp Bot, 2002, 53: 233–240

    Article  PubMed  CAS  Google Scholar 

  15. Zhang C, Hong B, Li J, Gao J. A simple method to evaluate the drought tolerance of ground-cover chrysanthemum (Dendranthema x grandiflorum) rooted cuttings. Scientia Agricultura Sinica (in Chinese), 2005, 38: 789–796

    Google Scholar 

  16. Bradford M M. A rapid, sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt Bioc, 1976, 72: 248–254

    Article  CAS  Google Scholar 

  17. Giannopplitics C N, Ries S K. Superoxidase dismutase I Occurrence in higher plants. Plant Physiol, 1977, 59: 309–314

    Article  Google Scholar 

  18. Su J, Wu R. Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci, 2004, 166: 941–948

    Article  CAS  Google Scholar 

  19. Curry J, Walker-Simmons M K. Unusual sequence of group 3 LEA(II) mRNA inducible by dehydration stress in wheat II. Plant Mol Biol, 1993, 21: 907–912

    Article  PubMed  CAS  Google Scholar 

  20. Imai R, Chang L, Ohta A, Bray E A, Takagi M. A lea-class gene of tomato confers salt, freezing tolerance when expressed in Sac-charomyces cerevisiae. Gene, 1996, 170: 243–248

    Article  PubMed  CAS  Google Scholar 

  21. Jaglo-Ottosen K R, Gilmour S J, Zarka D G, Schabenberger O, Tomashow M F. Arabidopsis CBF1 over-expression induces COR genes, enhances freezing tolerance. Science, 1998, 280: 104–106

    Article  PubMed  CAS  Google Scholar 

  22. McKersie B D, Chen Y, Beus M D, Bowley S R, Bowler C. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L). Plant Physiol, 1993, 103: 1155–1163

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gao Junping.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, B., Tong, Z., Ma, N. et al. Heterologous expression of the AtDREB1A gene in chrysanthemum increases drought and salt stress tolerance. SCI CHINA SER C 49, 436–445 (2006). https://doi.org/10.1007/s11427-006-2014-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-006-2014-1

Keywords

Navigation