Skip to main content
Log in

Screening promoters for Anthurium transformation using transient expression

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

There are multiple publications on Anthurium transformation, yet a commercial product has not been achieved. This may be due to use of non-optimum promoters here we address this problem.

Abstract

Different promoters and tissue types were evaluated for transient β-glucuronidase (GUS) expression in Anthurium andraeanum Hort. ‘Marian Seefurth’ following microprojectile bombardment. Plasmids containing the Ubiquitin 2, Actin 1, Cytochrome C1 from rice, Ubiquitin 1 from maize and 35S promoter from Cauliflower Mosaic Virus fused to a GUS reporter gene were bombarded into in vitro grown anthurium lamina, somatic embryos and roots. The number of GUS foci and the intensity of GUS expression were evaluated for each construct. Ubiquitin promoters from rice and maize resulted in the highest number of expressing cells in all tissues examined. Due to the slow growth of anthurium plants, development of transgenic anthurium plants takes years. This research has rapidly identified multiple promoters that express in various anthurium tissues facilitating the development of transformation vectors for the expression of desirable traits in anthurium plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

2,4-D :

2,4-Dichlorophenoxyacetic acid

GUS:

β Glucuronidase

HDOA:

Hawaii Department of Agriculture

MS:

Murashige and Skoog

USDA:

United States Department of Agriculture

X-Gluc:

5-Bromo-4 chloro-3 indolyl-β-d-glucoride, cyclohexyl ammonium salt

References

  • Alvarez AM, Toves PJ, Vowell TS (2006) Bacterial blight of Anthuriums: Hawaii’s experience with a global disease. APSnet feature. http://www.apsnet.org/online/feature/anthurium/

  • Aragaki M, Apt WJ, Kunimoto RK, Ko WH, Uchida JY (1984) Nature and control of Anthurium decline. Plant Dis 68:509–511

    Google Scholar 

  • Atkinson HJ, Grimwood S, Johnston K, Green J (2004) Prototype demonstration of transgenic resistance to the nematode Radopholus similis conferred on banana by cystatin. Transgenic Res 13:135–142

    Article  PubMed  CAS  Google Scholar 

  • Board of Governers of the Federal Reserve System (2012) Foreign exchange rates—H.10 country data. http: http://www.federalreserve.gov/releases/H10/hist/dat00_eu.htm. Accessed 05 Nov 2012

  • Broothaerts W, Mitchell HJ, Weir B, Kaines S, Smith LM, Yang W, Mayer JE, Roa-Rodriguez C, Jefferson RA (2005) Gene transfer to plants by diverse species of bacteria. Nature 433:629–633. doi:10.1038/nature03309

    Article  PubMed  CAS  Google Scholar 

  • Butaye KMJ, Cammue BPA, Delauré SL, De Bolle MFC (2005) Approaches to minimize variation of transgene expression in plants. Mol Breed 17:79–91

    Article  Google Scholar 

  • CBI Marketing Survey (2009) The EU market for tropical flowers. http://www.cbi.eu/marketinfo/cbi/docs/cut_flowers_and_foliage_the_eu_market_for_tropical_flowers. Accessed 21 Sept 2012

  • Chen FC, Kuehnle AR (1996) Obtaining transgenic Anthurium through Agrobacterium-mediated transformation of etiolated internodes. J Am Soc Hort Sci 121:47–51

    CAS  Google Scholar 

  • Chen FC, Kuehnle AR, Sugii N (1997) Anthurium root for micropropagation and Agrobacterium tumefaciens-mediated gene transfer. Plant Cell Tiss Org Cul 49:71–74

    Article  CAS  Google Scholar 

  • Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218. doi:10.1007/bf01969712

    Article  PubMed  CAS  Google Scholar 

  • Duncan LW, Moens M (2006) Migratory endoparasitic nematodes. In: Perry RN, Moens M (eds) Plant nematology. CABI, Oxfordshire, pp 123–152

    Chapter  Google Scholar 

  • Fitch MMM, Leong TCW, He X, McCafferty HRK, Zhu YJ, Moore PH, Gonsalves D, Aldwinkle HS, Atkinson HJ (2011) Improved Anthurium transformation. HortSci 46:358–364

    CAS  Google Scholar 

  • HDOA Agricultural Development Division and USDA National Agricultural Statistics Service (2011) Statistics of Hawaii agriculture 2009. http://www.nass.usda.gov/Statistics_by_State/Hawaii/index.asp. Accessed 26 Jan 2012

  • Hellens RP, Anne Edwards E, Leyland NR, Bean S, Mullineaux PM (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42:819–832

    Article  PubMed  CAS  Google Scholar 

  • Hondred D, Walker JM, Mathews DE, Vierstra RD (1999) Use of ubiquitin fusions to augment protein expression in transgenic plants. Plant Physiol 119:713–723

    Article  PubMed  CAS  Google Scholar 

  • Jang IC, Cho WB, Lee KH, Song SI, Nahm BH, Kim JK (2002) High-level and ubiquitious expression of the rice cytochrome c gene OsCc1 and its promoter activity in transgenic plants provides a useful promoter for transgenesis of monocots. Plant Phys 129:1473–1481

    Article  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Kikkert JR (1993) The biolistic PDS-1000/He device. Plant Cell Tiss Org Cul 33:221–226

    Article  CAS  Google Scholar 

  • Kuehnle AR, Chen FC, Sugii N (1992) Somatic embryogenesis and plant regeneration in Anthurium andreanum hybrids. Plant Cell Rep 11:438–442

    Google Scholar 

  • Kuehnle AR, Chen FC, Sugii N (2001) Transgenic Anthurium. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 48., Transgenic crops IIISpringer, Berlin, pp 3–15

    Google Scholar 

  • Kuehnle AR, Fujii T, Chen FC, Alvarez A, Sugii N, Fukui R, Aragon SL, Jaynes JM (2004) Peptide biocides for engineering bacterial blight tolerance and susceptibility in cut-flower Anthurium. HortSci 39:1327–1331

    CAS  Google Scholar 

  • Matsumoto TK, Kuehnle AR (1997) Micropropagation of Anthurium. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 40., High-tech and micropropagation VISpringer, Berlin, pp 14–29

    Google Scholar 

  • McElroy D, Zhang W, Cao J, Wu R (1990) Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 2:163–171. doi:10.1105/tpc.2.2.163

    PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nishijima WT (1994) Diseases. In: Higaki T, Lichty JS, Moniz D (eds) Anthurium culture in Hawaii. HITHAR research extension series 152. College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu, pp 13–18

  • Peremarti A, Twyman RM, Gómez-Galera S, Naqvi S, Farré G, Sabalza M, Miralpeix B, Dashevskaya S, Yuan D, Ramessar K, Christou P, Zhu C, Bassie L, Capell T (2010) Promoter diversity in multigene transformation. Plant Mol Biol 73:363–378

    Article  PubMed  CAS  Google Scholar 

  • Roderick H, Tripathi L, Babirye A, Wang D, Tripathi J, Urwin PE, Atkinson HJ (2012) Generation of transgenic plantain (Musa spp.) with resistance to plant pathogenic nematodes. Mol Plant Pathol 13:842–851

    Article  PubMed  CAS  Google Scholar 

  • Rose AB (2008) Intron-mediated regulation of gene expression. In: Nuclear pre-mRNA processing in plants, vol 326. Current topics in microbiology and immunology. Springer, New York

  • Rose AB, Emami S, Bradnam K, Korf I (2011) Evidence for a DNA-based mechanism of intron-mediated enhancement. Front Plant Sci 2:98

    PubMed  CAS  Google Scholar 

  • Sambrook J (2001) Molecular cloning: a laboratory manual. Volume accessed from http://nla.gov.au/nla.cat-vn2284148. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

  • Shehata S (1992) Supply-demand and market analysis of the cut-flower industry: a focus on the Hawaiian anthurium industry. In: Delate KM and Tome CHM (eds) Proceedings of Anthurium blight conference of 5th Hawaii Institute of Tropical Agricultural Human Research, University of Hawaii, Honolulu, pp 35–38

  • Singer SD, Liu Z, Cox KD (2012) Minimizing the unpredictability of transgene expression in plants: the role of genetic insulator. Plant Cell Rep 31:13–25

    Article  PubMed  CAS  Google Scholar 

  • Thomson JG, Cook M, Guttman M, Smith J, Thilmony R (2011) Novel sul1 binary vectors enable an inexpensive foliar selection method in Arabidopsis. BMC Res Notes 4:44. doi:10.1186/1756-0500-4-44

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Oard JH (2003) Rice ubiquitin promoters: deletion analysis and potential usefulness in plant transformation systems. Plant Cell Rep 23:129–134

    Article  Google Scholar 

  • Yi JY, Seo HW, Yang MS, Robb JE, Nazar RN, Lee SW (2004) Plant defense gene promoter enhances the reliability of shiva-1 gene-induced resistance to soft rot disease in potato. Planta 220:165–171

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Donna Ota for her excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tracie K. Matsumoto.

Additional information

Communicated by H. Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsumoto, T.K., Keith, L.M., Cabos, R.Y.M. et al. Screening promoters for Anthurium transformation using transient expression. Plant Cell Rep 32, 443–451 (2013). https://doi.org/10.1007/s00299-012-1376-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-012-1376-z

Keywords

Navigation