Skip to main content
Log in

Use of plant growth-promoting rhizobacteria for the biocontrol of root-rot disease complex of chickpea

  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

The effects of Pseudomonas putida, Pseudomonas alcaligenes and a Pseudomonas isolate (Ps28) on the hatching and penetration of Meloidogyne incognita in chickpea (Cicer arietinum) roots were studied. Root colonisation, antifungal activity against Macrophomina phaseolina and the production of siderophores, hydrogen cyanide (HCN) and indole acetic acid (IAA) were also estimated for each bacterial isolate. P. putida had the greatest inhibitory effect on hatching and root penetration of M. incognita followed by P. alcaligenes and Ps28, respectively. Similarly, P. putida colonised roots more effectively than P. alcaligenes or Ps28. In addition, P. putida had the greatest inhibitory effect on M. Phaseolina and produced the greatest amounts of siderophores, IAA and HCN compared with P. alcaligenes and Ps28. The effects of these bacterial isolates on plant growth and root-rot disease complex of chickpea caused by M. Incognita and M. phaseolina were observed. Plant inoculations with these bacterial isolates increased plant growth and the number of seed pods in diseased plants while reducing galling, nematode multiplication and the root-rot disease index. P. putida caused the greatest reduction in galling and nematode multiplication followed by P. alcaligenes and Ps28, respectively. The present study suggests that P. putida has potential for the biocontrol of root-rot disease complex of chickpea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Askeland RA, Morrison SM (1983) Cyanide production by Pseudomonas fluorescens and Pseudomonas aeruginosa. Applied and Environmental Microbiology 45, 1802–1807.

    CAS  PubMed  Google Scholar 

  • Bagnasco P, De La Fuente L, Gaultieri G, Noya F, Arias A (1998) Fluorescent Pseudomonas spp. as biocontrol agents against forage legume root pathogenic fungi. Soil Biology & Biochemistry 30, 1317–1323. doi: 10.1016/S0038-0717(98)00003-0

    Article  CAS  Google Scholar 

  • Beckman CH (1987) ‘The nature of wilt diseases of plants.’ (American Phytopathological Society Press: St Paul, MN)

    Google Scholar 

  • Beckman CH (1990) Host responses to the pathogen. In ‘Fusarium wilt of Banana’. (Ed. RC Ploetz) pp. 93–105. (American Phytopathological Society Press: St Paul, MN)

    Google Scholar 

  • Beckman CH (2000) Phenolic-storing cells: keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants? Physiological and Molecular Plant Pathology 57, 101–110. doi: 10.1006/pmpp.2000.0287

    Article  CAS  Google Scholar 

  • Bender CL, Rangaswami V, Loper J (1999) Polyketide production by plant associated Pseudomonads. Annual Review of Phytopathology 37, 175–196. doi: 10.1146/annurev.phyto.37.1.175

    Article  CAS  PubMed  Google Scholar 

  • Broadbent P, Baker KFM, Franks N, Holland J (1977) Effect of Bacillus sp. on increased growth of seedlings in steamed and non-treated soil. Phytopathology 67, 1027–1034.

    Article  Google Scholar 

  • Castric P (1994) Influence of oxygen on the Pseudomonas aeruginosa hydrogen cyanide synthase. Current Microbiology 29, 19–21. doi: 10.1007/BF01570186

    Article  CAS  Google Scholar 

  • Dospekhov BA (1984) ‘Field experimentation: Statistical procedures.’ (Mir Publishers: Moscow)

    Google Scholar 

  • Dowling DN, O’Gara F (1994) Metabolites of Pseudomonas involved in biocontrol of plant diseases. Trends in Biotechnology 12, 133–141. doi: 10.1016/0167-7799(94)90091-4

    Article  CAS  Google Scholar 

  • Dwivedi D, Johri BN (2003) Antifungals from fluorescent pseudomonads: Biosynthesis and regulation. Current Science 85, 1693–1703.

    CAS  Google Scholar 

  • Fernández-Falcón M, Borges AA, Borges-Pérez A (2003) Induced resistance to Fusarium wilt of banana by exogenous applications of indole acetic acid. Phytoprotection 84, 149–153.

    Google Scholar 

  • Fridlender M, Inbar J, Chet I (1993) Biological control of soil borne plant pathogens by a β-1,3-gluconase producing Pseudomonas cepacia. Soil Biology & Biochemistry 25, 1211–1221. doi: 10.1016/0038-0717 (93)90217-Y

    Article  CAS  Google Scholar 

  • Gamliel A, Katan J (1993) Suppression of major and minor pathogens by fluorescent pseudomonads in solarized and non-solarized soil. Phytopathology 83, 68–75.

    Article  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free living bacteria. Canadian Journal of Microbiology 41, 1376–1381.

    Google Scholar 

  • Gupta CP, Sharma A, Dubey RC, Maheshwari DK (1999) Pseudomonas aeruginosa as a strong antagonist of Macrophomina phaseolina and Fusarium oxysporum. Cytobiosis 99, 183–189.

    CAS  Google Scholar 

  • Hebbar KP, Davey AG, Merrin J, McLoughlins TJ, Dart PJ (1992) Pseudomonas cepacia a potential suppressor of maize soil borne disease: seed inoculation and maize root colonization. Soil Biology & Biochemistry 24, 999–1007. doi: 10.1016/0038-0717(92)90028-V

    Article  Google Scholar 

  • Hort JC, Kreig NR, Sneath PHA, Staley JT, William ST (1994) ‘Bergey’s manual of determinative bacteriology.’ 9th edn. (William and Wilkins: Baltimore, MD)

    Google Scholar 

  • Kloepper JW (2003) A review of mechanisms for plant growth promotion by PGPR. In ‘Proceedings of the sixth international PGPR workshop’. (Eds MS Reddy, M Anandaraj, SJ Eapen, YR Sarma, JW Kleeper) pp. 81–92. (Indian Institute of Spice Research: Calicut, India)

    Google Scholar 

  • Kraus J, Loper J (1995) Characterization of genomic region required for production of antibiotic pyoluteorin by the biological control agent Pseudomonas fluorescens Pf-5. Applied and Environmental Microbiology 61, 849–854.

    CAS  PubMed  Google Scholar 

  • Lemanceau P, Alabouvette C (1993) Suppression of fusarium wilts by fluorescent pseudomonas: mechanisms and applications. Biocontrol Science and Technology 3, 219–234.

    Article  Google Scholar 

  • Liu L, Kloepper JW, Tuzun S (1995) Induction of systemic resistance in cucumber against Fusarium wilt by plant growth promoting rhizobacteria. Phytopathology 85, 695–698. doi: 10.1094/Phyto-85-695

    Article  Google Scholar 

  • Loper JE, Buyer JS (1991) Siderophore in microbial interactions on plant surfaces. Molecular Plant-Microbe Interactions 4, 5–13.

    Article  CAS  Google Scholar 

  • Mazzola M (2002) Mechanisms of natural soil suppressiveness to soil-borne diseases. Antonie Van Leeuwenhoek 81, 557–564. doi: 10.1023/ A:1020557523557

    Article  CAS  PubMed  Google Scholar 

  • Miller RL, Higgins VJ (1970) Association of cyanide with infection of birdfoot trefoil Stemphylium loti. Phytopathology 60, 104–110.

    Article  Google Scholar 

  • Oostendrop M, Sikora RA (1989) Utilization of antagonistic rhizobacteria as seed treatment for the biological control of Heterodera schachtii in sugarbeet. Revue de Nematologie 12, 77–83.

    Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant pathogens. Microbiological Reviews 56, 662–672.

    PubMed  Google Scholar 

  • Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Samiyappan R (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Protection (Guildford, Surrey) 20, 1–11. doi: 10.1016/S0261-2194 (00)00056-9

    Article  CAS  Google Scholar 

  • Riker AJ, Riker RS (1936) ‘Introduction to research on plant diseases.’ (John Swift: New York)

    Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances 17, 319–339. doi: 10.1016/S0734-9750(99)00014-2

    Article  CAS  PubMed  Google Scholar 

  • Sacherer P, Défago G, Haas D (1994) Extracellular protease and phosholipase Care controlled by the global regulatory gene gacA in the biocontrol strain Pseudomonas fluorescens CHA0. FEMS Microbiology Letters 116, 155–160. doi: 10.1111/j.1574-6968.1994.tb06694.x

    Article  CAS  PubMed  Google Scholar 

  • Schroth MN, Hancock JG (1982) Disease suppressive soil and root colonizing bacteria. Science 216, 1376–1381. doi: 10.1126/science. 216.4553.1376

    Article  CAS  PubMed  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Annals of Biochemistry 160, 47–56. doi: 10.1016/0003-2697(87)90612-9

    Article  CAS  Google Scholar 

  • Seong KY, Shin PG (1996) Effect of siderophore on biological control of plant pathogens and promotion of plant growth by Pseudomonas fluorescens Ps88. Agricultural Chemistry and Biotechnology 39, 20–24.

    CAS  Google Scholar 

  • Sharma PD (2001) ‘Microbiology.’ (Rastogi: Meerut, India)

    Google Scholar 

  • Siddiqui ZA (2006) PGPR: Prospective biocontrol agents of plant pathogens. In ‘PGPR: Biocontrol and biofertilization’. (Ed. ZA Siddiqui) pp. 111–142. (Springer: The Netherlands)

    Chapter  Google Scholar 

  • Siddiqui ZA, Husain SI (1991) Interaction of Meloidogyne incognita race 3 and Macrophomina phaseolina in root-rot disease complex of chickpea. Nematologia Mediterranea 19, 237–239.

    Google Scholar 

  • Siddiqui ZA, Husain SI (1992) Interaction of Meloidogyne incognita race 3, Macrophomina phaseolina and Brandyrhizobium sp. in the root-rot disease complex of chickpea, Cicer arietinum. Fundamental and Applied Nematology 16, 491–494.

    Google Scholar 

  • Siddiqui ZA, Mahmood I (1999) Role of bacteria in the management of plant parasitic nematodes. A review. Bioresource Technology 69, 167–179. doi: 10.1016/S0960-8524(98)00122-9

    Article  CAS  Google Scholar 

  • Southey JF (1986) ‘Laboratory methods for work with plant and soil nematodes.’ 6th edn. (Ministry of Agriculture Fisheries and Food: London)

    Google Scholar 

  • Srivastava AK, Singh T, Jana TK, Arora DK (2001) Induced resistance and control of charcoal rot in Cicer arietinum (chickpea) by Pseudomonas fluorescens. Canadian Journal of Botany 79, 787–795. doi: 10.1139/cjb-79-7-787

    Article  Google Scholar 

  • Ueno M, Kihara J, Honda Y, Arase S (2004) Indole-related compounds induce the resistance to rice blast fungus Magnaporthe grisea in barley. Journal of Phytopathology 152, 606–612. doi: 10.1111/j.1439-0434.2004.00903.x

    Article  CAS  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology 36, 453–483. doi: 10.1146/annurev.phyto.36.1.453

    Article  PubMed  Google Scholar 

  • Voisard C, Keel C, Haas D, Defago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. The EMBO Journal 8, 351–358.

    CAS  PubMed  Google Scholar 

  • Weller DM (1988) Biological control of soil borne plant pathogens in the rhizosphere with bacteria. Annual Review of Phytopathology 26, 379–407. doi: 10.1146/annurev.py.26.090188.002115

    Article  Google Scholar 

  • Weller DM, Thomashow LS (1993) Use of rhizobacteria for biocontrol. Current Opinion in Biotechnology 4, 306–311. doi: 10.1016/0958-1669 (93)90100-B

    Article  Google Scholar 

  • Zehnder GW, Murphy JF, Sikora EJ, Kloepper JW (2001) Application of rhizobacteria for induced resistance. European Journal of Plant Pathology 107, 39–50. doi: 10.1023/A:1008732400383

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. A. Siddiqui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akhtar, M.S., Siddiqui, Z.A. Use of plant growth-promoting rhizobacteria for the biocontrol of root-rot disease complex of chickpea. Australasian Plant Pathology 38, 44–50 (2009). https://doi.org/10.1071/AP08075

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1071/AP08075

Keywords

Navigation