Skip to main content
Log in

Influence of oxygen on thePseudomonas aeruginosa hydrogen cyanide synthase

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Partially purified HCN Synthase (HCS) required exogenous electron acceptors for activity. Phenazine methosulfate (PMS) provided the greatest activity, whereas oxygen allowed only a limited response. TheP. aeruginosa secondary metabolite pyocyanin supported HCS-mediated cyanide production. HCN production by whole cells operated maximally at low oxygen levels, whereas moderate oxygen levels limited HCS activity. Respiration and cyanogenesis by whole cells were equally sensitive to azide; HCS was completely resistant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Asmus E, Garschagen H (1953) The use of barbituric acid for the photometric determination of cyanide and thiocyanate. Z Anal Chem 138:414–422

    Google Scholar 

  2. Castric KF, McDevitt DA, Castric PA (1981) Influence of aeration on hydrogen cyanide biosynthesis byPseudomonas aeruginosa. Curr Microbiol 5:233–266

    Google Scholar 

  3. Castric PA (1975) Hydrogen cyanide, a secondary metabolite ofPseudomonas aeruginosa. Can J Microbiol 5:613–618

    Google Scholar 

  4. Castric PA (1983) Hydrogen cyanide production byPseudomonas aeruginosa at reduced oxygen levels. Can J Microbiol 29:1344–1349

    PubMed  Google Scholar 

  5. Castric PA, Castric KF, Meganathan R (1981) Factors influencing the termination of cyanogenesis inPseudomonas aeruginosa. In: Vennesland B, Conn EE, Knowles CJ, Westley J, Wissing F (eds) Cyanide in biology. London: Academic Press, pp 263–274

    Google Scholar 

  6. Hassan HM, Fridovitch I (1979) Intracellular production of superoxide radical and of hydrogen peroxide by redox active compounds. Arch Biochem Biophys 196:385–395

    PubMed  Google Scholar 

  7. Knowles PJ, Bunch AW (1986) Microbial cyanide metabolism. Adv Microb Physiol 27:73–111

    PubMed  Google Scholar 

  8. Kralik CA, Castric PA (1979) Respiration and cyanogenesis inPseudomonas aeruginosa. Curr Microbiol 3:71–74

    Google Scholar 

  9. Mancini MA, Castric PA (1989) Threonine metabolism byPseudomonas aeruginosa. Curr Microbiol 18:105–108

    Google Scholar 

  10. Sorensen RU, Joseph Jr F (1993) Phenazine pigments inPseudomonas aeruginosa infection. In: Campa M, Bendinelli M, Friedman H (eds)Pseudomonas aeruginosa as an opportunistic pathogen. New York: Plenum Press, pp 43–57

    Google Scholar 

  11. Voisard C, Keel C, Haas D, Defago G (1989) Cyanide production byPseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358

    Google Scholar 

  12. Wissing F (1974) Cyanide formation from oxidation of glycine by aPseudomonas species. J Bacteriol 117:1289–1294

    PubMed  Google Scholar 

  13. Zimmerman A, Reimmann C, Galimand M, Haas D (1991) Anaerobic growth and cyanide synthesis ofPseudomonas aeruginosa depend onanr, a regulatory gene homologous withfnr ofEscherichia coli. Mol Microbiol 5:1483–1490

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castric, P. Influence of oxygen on thePseudomonas aeruginosa hydrogen cyanide synthase. Current Microbiology 29, 19–21 (1994). https://doi.org/10.1007/BF01570186

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01570186

Keywords

Navigation