Skip to main content
Log in

Probabilistic independence axiom

  • Original Article
  • Published:
The Geneva Risk and Insurance Review Aims and scope Submit manuscript

Abstract

One of the most well-known theories of decision making under risk is expected utility theory based on the independence axiom. The independence axiom postulates that decision maker’s preferences between two lotteries are not affected by mixing both lotteries with the same third lottery (in identical proportions). The probabilistic independence axiom (also known as the cancelation axiom) extends this classic independence axiom to situations when a decision maker chooses in a probabilistic manner (i.e., she does not necessarily prefer the same choice alternative when repeatedly presented with the same choice set). Probabilistic choice may occur for a variety of reasons such as unobserved attributes of choice alternatives, imprecision of preferences, random errors/noise in decisions. According to probabilistic independence axiom, the probability that a decision maker chooses one lottery over another does not change when both lotteries are mixed with the same third lottery (in identical proportions). This paper presents a model of probabilistic binary choice under risk based on this probabilistic independence axiom. The presented model generalizes an incremental expected utility advantage model of Fishburn (Int Econ Rev 19(3):633–646, 1978) and stronger utility model of Blavatskyy (Theory Decis 76(2):265–286, 2014).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Machina (1985) and Chew et al. (1991) develop models of probabilistic choice under risk as a result of deliberate randomization by decision makers with (deterministic) quasi-concave preferences. Carbone and Hey (1995) find that conscious randomization cannot rationalize their experimental data but Agranov and Ortoleva (2017) reach the opposite conclusion.

  2. Fechner's (1860) model of random errors and Luce's (1959) choice model satisfy a weaker version of the probabilistic independence axiom, which is known as the common consequence independence (cf. Blavatskyy 2008, Axiom 4, p. 1051).

  3. An outside observer cannot observe choice decisions when a decision maker faces a binary choice between two identical lotteries.

  4. i.e., when one lottery does not first-order stochastically dominate the other.

  5. Other possible distributions of random errors are detailed in Blavatskyy (2014, p. 270).

  6. i.e., utility of the least desirable outcome is zero and utility of the most desirable outcome is one.

  7. For any two lotteries \(L, L^{\prime} \in {\mathcal{L}},\) a contextual probability equivalent of lottery L is probability α ∈ [0,1] such that a decision maker is indifferent between L and a compound lottery that yields the least upper bound on L and L′ (in terms of the first-order stochastic dominance) with probability α and the greatest lower bound on L and L′ (in terms of the first-order stochastic dominance) with probability 1 − α. Under expected utility theory, contextual probability equivalents of any two lotteries should sum up to one.

  8. Raw experimental data are reprinted in Tables 2a and 2b in Loomes et al. (2002, pp. 111–112), binary choice questions are presented in Fig. 2 in Loomes and Sugden (1998, pp. 587–588) as well as Table 1a in Loomes et al. (2002, p. 109).

  9. Carbone and Hey (1995), Loomes and Sugden (1998, Table 2, p. 591), and Hey (2001, Table 2, p. 14) find evidence of essentially deterministic choice when one lottery transparently dominates another lottery.

References

  • Agranov, M., and P. Ortoleva. 2017. Stochastic choice and preferences for randomization. Journal of Political Economy 125 (1): 40–68.

    Article  Google Scholar 

  • Ballinger, P., and N. Wilcox. 1997. Decisions, error and heterogeneity. Economic Journal 107: 1090–1105.

    Article  Google Scholar 

  • Bernoulli, D. 1738. Specimen theoriae novae de mensura sortis. Commentarii Academiae Scientiarum Imperialis Petropolitanae; translated in Bernoulli, D. (1954) Exposition of a new theory on the measurement of risk. Econometrica 22: 23–36.

    Article  Google Scholar 

  • Blavatskyy, Pavlo. 2008. Stochastic utility theorem. Journal of Mathematical Economics 44 (11): 1049–1056.

    Article  Google Scholar 

  • Blavatskyy, Pavlo. 2009. Preference reversals and probabilistic choice. Journal of Risk and Uncertainty 39 (3): 237–250.

    Article  Google Scholar 

  • Blavatskyy, Pavlo. 2011. A model of probabilistic choice satisfying first-order stochastic dominance. Management Science 57 (3): 542–548.

    Article  Google Scholar 

  • Blavatskyy, Pavlo. 2012. Probabilistic choice and stochastic dominance. Economic Theory 50 (1): 59–83.

    Article  Google Scholar 

  • Blavatskyy, Pavlo. 2014. Stronger utility. Theory and Decision 76 (2): 265–286.

    Article  Google Scholar 

  • Butler, David J., and Graham C. Loomes. 2007. Imprecision as an account of the preference reversal phenomenon. American Economic Review 97 (1): 277–297.

    Article  Google Scholar 

  • Butler, David J., and Graham C. Loomes. 2011. Imprecision as an account of violations of independence and betweenness. Journal of Economic Behavior & Organization 80: 511–522.

    Article  Google Scholar 

  • Camerer, Colin F. 1989. An experimental test of several generalized utility theories. Journal of Risk and Uncertainty 2 (1): 61–104.

    Article  Google Scholar 

  • Carbone, E., and J. Hey. 1995. A comparison of the estimates of EU and non-EU preference functionals using data from pairwise choice and complete ranking experiments. Geneva Papers on Risk and Insurance Theory 20: 111–133.

    Article  Google Scholar 

  • Chew, S., L. Epstein, and U. Segal. 1991. Mixture symmetry and quadratic utility. Econometrica 59: 139–163.

    Article  Google Scholar 

  • Falmagne, Jean-Claude. 1985. Elements of psychophysical theory. New York: Oxford University Press.

    Google Scholar 

  • Fechner, Gustav. 1860. Elements of psychophysics. New York: Holt, Rinehart and Winston.

    Google Scholar 

  • Fishburn, Peter. 1978. A probabilistic expected utility theory of risky binary choices. International Economic Review 19 (3): 633–646.

    Article  Google Scholar 

  • Gul, F., and W. Pesendorfer. 2006. Random expected utility. Econometrica 71 (1): 121–146.

    Article  Google Scholar 

  • Harless, D., and C. Camerer. 1994. The predictive utility of generalized expected utility theories. Econometrica 62: 1251–1289.

    Article  Google Scholar 

  • Hey, J.D. 2001. Does repetition improve consistency? Experimental Economics 4: 5–54.

    Article  Google Scholar 

  • Hey, John D., and Chris Orme. 1994. Investigating generalisations of expected utility theory using experimental data. Econometrica 62: 1291–1326.

    Article  Google Scholar 

  • Jensen, J. 1906. Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Mathematica 30 (1): 175–193.

    Article  Google Scholar 

  • Loomes, Graham. 2005. Modelling the stochastic component of behaviour in experiments: some issues for the interpretation of data. Experimental Economics 8: 301–323.

    Article  Google Scholar 

  • Loomes, Graham, and Robert Sugden. 1995. Incorporating a stochastic element into decision theories. European Economic Review 39: 641–648.

    Article  Google Scholar 

  • Loomes, Graham, and Robert Sugden. 1998. Testing different stochastic specifications of risky choice. Economica 65: 581–598.

    Article  Google Scholar 

  • Loomes, Graham, Peter Moffatt, and Robert Sugden. 2002. A microeconomic test of alternative stochastic theories of risky choice. Journal of Risk and Uncertainty 24: 103–130.

    Article  Google Scholar 

  • Luce, R.D. 1959. Individual choice behavior. New York: Wiley.

    Google Scholar 

  • Machina, M. 1985. Stochastic choice functions generated from deterministic preferences over lotteries. Economic Journal 95: 575–594.

    Article  Google Scholar 

  • McFadden, D. 1976. Quantal choice analysis: A survey. Annals of Economic and Social Measurement 5: 363–390.

    Google Scholar 

  • Pascal, Blaise. 1670. Pensées de M. Pascal sur la religion et sur quelques autres sujets, qui ont esté trouvées après sa mort parmy ses papiers. édition de Port-Royal, Paris, chez Guillaume Desprez.

  • Seidl, C. 2002. Preference reversal. Journal of Economic Surveys 16: 621–655.

    Article  Google Scholar 

  • Starmer, Chris, and Robert Sugden. 1989. Probability and juxtaposition effects: An experimental investigation of the common ratio effect. Journal of Risk and Uncertainty 2: 159–178.

    Article  Google Scholar 

  • Tversky, A., P. Slovic, and D. Kahneman. 1990. The causes of preference reversal. American Economic Review 80: 204–217.

    Google Scholar 

  • von Neumann, John, and Oscar Morgenstern. 1947. Theory of games and economic behavior, 2nd ed. Princeton: Princeton University Press.

    Google Scholar 

  • Wilcox, N. 2008. Stochastic models for binary discrete choice under risk: A critical primer and econometric comparison. In Research in experimental economics, vol. 12, ed. J.C. Cox and G.W. Harrison, 197–292. Bingley: Emerald.

    Google Scholar 

  • Wilcox, N. 2011. Stochastically more risk averse: A contextual theory of stochastic discrete choice under risk. Journal of Econometrics 162: 89–104.

    Article  Google Scholar 

Download references

Funding

Pavlo Blavatskyy is a member of the Entrepreneurship and Innovation Chair, which is part of LabEx Entrepreneurship (University of Montpellier, France) and funded by the French government (Labex Entreprendre, ANR-10-Labex-11-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavlo Blavatskyy.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Appendix

Appendix

Proof of Proposition 1

Consider any two distinct lotteries \(L\left( {p_{ 1} , \ldots ,p_{n} } \right) \in {\mathcal{L}}{\text{ and}}\;L^{{\prime }} \left( {q_{ 1} , \ldots ,q_{n} } \right) \in {\mathcal{L}}\) such that pi≥ qi for all i ∊ {1,…,k} and qj> pj for all j ∊ {k + 1,…,n} for some k ∊ {1,…,n − 1}.

First, lottery L′(q1,…,qn) is a reduced-form of a compound lottery \(q_{ 1} \varvec{x}_{{\mathbf{1}}} \, + \,\left( { 1 - q_{ 1} } \right)L_{1}^{{\prime }} ,\) where x1 denotes a degenerate lottery that yields outcome x1 for sure and \(L_{1}^{{\prime }}\) denotes lottery

$$\left( {0,\frac{{q_{2} }}{{1 - q_{1} }}, \ldots ,\frac{{q_{n} }}{{1 - q_{1} }}} \right)$$

Similarly, lottery L(p1,…,pn) is a reduced-form of a compound lottery \(q_{ 1} \varvec{x}_{{\mathbf{1}}} \, + \,\left( { 1- q_{ 1} } \right)L_{ 1} ,\) where L1 denotes lottery

$$\left( {\frac{{p_{1} - q_{1} }}{{1 - q_{1} }},\frac{{p_{2} }}{{1 - q_{1} }}, \ldots ,\frac{{p_{n} }}{{1 - q_{1} }}} \right)$$

If Axiom 1 holds then \(P\left( {L,L^{{\prime }} } \right)\, \equiv \,P\left( {q_{ 1} x_{{\mathbf{1}}} \, + \,\left( { 1- q_{ 1} } \right)L_{ 1} ,q_{ 1} x_{{\mathbf{1}}} \, + \,\left( { 1- q_{ 1} } \right)L_{1}^{{\prime }} } \right)\, = \,P\left( {L_{ 1} ,L_{1}^{{\prime }} } \right).\)

Second, \(L_{1}^{{\prime }}\) is a reduced-form of a compound lottery \(\left[ {q_{ 2} /\left( { 1 - q_{ 1} } \right)} \right]\varvec{x}_{{\mathbf{2}}} \, + \,\left[ { 1 - q_{ 2} /\left( { 1 - q_{ 1} } \right)} \right]L_{2}^{{\prime }} ,\) where x2 denotes a degenerate lottery that yields outcome x2 for sure and \(L_{2}^{{\prime }}\) denotes lottery

$$\left( {0,0,\frac{{q_{3} }}{{1 - q_{1} - q_{2} }}, \ldots ,\frac{{q_{n} }}{{1 - q_{1} - q_{2} }}} \right)$$

Similarly, lottery L1 is a reduced-form of a compound lottery \(\left[ {q_{ 2} /\left( { 1 - q_{ 1} } \right)} \right]\varvec{x}_{{\mathbf{2}}} \, + \,\left[ { 1 - q_{ 2} /\left( { 1 - q_{ 1} } \right)} \right]L_{2} ,\) where L2 denotes lottery

$$\left( {\frac{{p_{1} - q_{1} }}{{1 - q_{1} - q_{2} }},\frac{{p_{2} - q_{2} }}{{1 - q_{1} - q_{2} }},\frac{{p_{3} }}{{1 - q_{1} - q_{2} }}, \ldots ,\frac{{p_{n} }}{{1 - q_{1} - q_{2} }}} \right)$$

If Axiom 1 holds then \(P\left( {L_{ 1} ,L_{1}^{{\prime }} } \right)\, \equiv \,P\left( {\left[ {q_{ 2} /\left( { 1- q_{ 1} } \right)} \right]x_{{\mathbf{2}}} \, + \,\left[ { 1- q_{ 2} /\left( { 1- q_{ 1} } \right)} \right]L_{ 2} ,\left[ {q_{ 2} /\left( { 1- q_{ 1} } \right)} \right]x_{{\mathbf{2}}} \, + \,\left[ { 1- q_{ 2} /\left( { 1- q_{ 1} } \right)} \right]L_{2}^{{\prime }} } \right)\, = \,P\left( {L_{ 2} ,L_{2}^{{\prime }} } \right).\)

Iterating such application of Axiom 1 for the first k outcomes we obtain that \(P\left( {L,L^{{\prime }} } \right)\, = \,P\left( {L_{k} ,L_{k}^{{\prime }} } \right),\) where Lk denotes lottery

$$\left( {\frac{{p_{1} - q_{1} }}{{1 - \mathop \sum \nolimits_{i = 1}^{k} q_{i} }}, \ldots ,\frac{{p_{k} - q_{k} }}{{1 - \mathop \sum \nolimits_{i = 1}^{k} q_{i} }},\frac{{p_{k + 1} }}{{1 - \mathop \sum \nolimits_{i = 1}^{k} q_{i} }}, \ldots ,\frac{{p_{n} }}{{1 - \mathop \sum \nolimits_{i = 1}^{k} q_{i} }}} \right)$$

and \(L_{k}^{{\prime }}\) denotes lottery

$$\left( {\underbrace {{0, \ldots ,0}}_{k},\frac{{q_{{k + 1}} }}{{1 - \sum\nolimits_{{i = 1}}^{k} {q_{i} } }}, \ldots ,\frac{{q_{n} }}{{1 - \sum\nolimits_{{i = 1}}^{k} {q_{i} } }}} \right)$$

Lottery Lk is a reduced form of a compound lottery

$$L_{k} \equiv \frac{{p_{k + 1} }}{{1 - \mathop \sum \nolimits_{i = 1}^{k} q_{i} }}\varvec{x}_{{\varvec{k} + 1}} + \left( {1 - \frac{{p_{k + 1} }}{{1 - \mathop \sum \nolimits_{i = 1}^{k} q_{i} }}} \right)L_{k + 1}$$

where xk+1 denotes a degenerate lottery that yields outcome xk+1 for sure and Lk+1 denotes lottery

$$\left( {\frac{{p_{1} - q_{1} }}{{1 - \mathop \sum \nolimits_{i = 1}^{k} q_{i} - p_{k + 1} }}, \ldots ,\frac{{p_{k} - q_{k} }}{{1 - \mathop \sum \nolimits_{i = 1}^{k} q_{i} - p_{k + 1} }},0,\frac{{p_{k + 2} }}{{1 - \mathop \sum \nolimits_{i = 1}^{k} q_{i} - p_{k + 1} }}, \ldots ,\frac{{p_{n} }}{{1 - \mathop \sum \nolimits_{i = 1}^{k} q_{i} - p_{k + 1} }}} \right)$$

Similarly, lottery \(L_{k}^{{\prime }}\) is a reduced form of a compound lottery

$$L'_{k} \equiv \frac{{p_{k + 1} }}{{1 - \mathop \sum \nolimits_{i = 1}^{k} q_{i} }}\varvec{x}_{{\varvec{k} + 1}} + \left( {1 - \frac{{p_{k + 1} }}{{1 - \mathop \sum \nolimits_{i = 1}^{k} q_{i} }}} \right)L'_{k + 1}$$

where \(L_{k + 1}^{{\prime }}\) denotes lottery

$$\left( {\underbrace {{0, \ldots ,0}}_{k},\frac{{q_{{k + 1}} - p_{{k + 1}} }}{{1 - \sum\nolimits_{{i = 1}}^{k} {q_{i} } - p_{{k + 1}} }},,\frac{{q_{{k + 2}} }}{{1 - \sum\nolimits_{{i = 1}}^{k} {q_{i} } - p_{{k + 1}} }} \ldots ,\frac{{q_{n} }}{{1 - \sum\nolimits_{{i = 1}}^{k} {q_{i} } - p_{{k + 1}} }}} \right)$$

Axiom 1 then implies \(P\left( {L_{k} ,L_{k}^{{\prime }} } \right)\, = \,P\left( {L_{k + 1} ,L_{k + 1}^{{\prime }} } \right).\)

Iterating such application of Axiom 1 for the remaining n − k − 1 outcomes we obtain that \(P\left( {L,L^{{\prime }} } \right)\, = \,P\left( {L_{n} ,L_{n}^{{\prime }} } \right)\) where Ln denotes lottery

$$\left( {\frac{{p_{1} - q_{1} }}{{\sum\nolimits_{{i = 1}}^{k} {\left( {p_{i} - q_{i} } \right)} }}, \ldots ,\frac{{p_{k} - q_{k} }}{{\sum\nolimits_{{i = 1}}^{k} {\left( {p_{i} - q_{i} } \right)} }},\underbrace {{0, \ldots ,0}}_{{n - k}},} \right)$$

and \(L_{n}^{{\prime }}\) denotes lottery

$$\left( {\underbrace {{0, \ldots ,0}}_{k},\frac{{q_{{k + 1}} - p_{{k + 1}} }}{{\sum\nolimits_{{j = k + 1}}^{n} {\left( {q_{j} - p_{j} } \right)} }}, \ldots ,\frac{{q_{n} - p_{n} }}{{\sum\nolimits_{{j = k + 1}}^{n} {\left( {q_{j} - p_{j} } \right)} }}} \right)$$

The last non-zero probability in lottery Ln is one minus the sum of the first k − 1 probabilities:

$$\frac{{p_{k} - q_{k} }}{{\mathop \sum \nolimits_{i = 1}^{k} \left( {p_{i} - q_{i} } \right)}} = 1 - \mathop \sum \limits_{r = 1}^{k - 1} \frac{{p_{r} - q_{r} }}{{\mathop \sum \nolimits_{i = 1}^{k} \left( {p_{i} - q_{i} } \right)}}$$

The last probability in lottery \(L_{n}^{{\prime }}\) is one minus the sum of the proceeding n − k − 1 probabilities:

$$\frac{{q_{n} - p_{n} }}{{\mathop \sum \nolimits_{j = k + 1}^{n} \left( {q_{j} - p_{j} } \right)}} = 1 - \mathop \sum \limits_{s = k + 1}^{n - 1} \frac{{q_{s} - p_{s} }}{{\mathop \sum \nolimits_{j = k + 1}^{n} \left( {q_{j} - p_{j} } \right)}}$$

Thus, P(L,L′) can be written as function (1) of n − 2 probabilities, where function \(F:\left[ {0,1} \right]^{n - 2} \to \left[ {0,1} \right]\) denotes the probability that a decision maker chooses lottery Ln over lottery \(L_{n}^{{\prime }} .\)****

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blavatskyy, P. Probabilistic independence axiom. Geneva Risk Insur Rev 46, 21–34 (2021). https://doi.org/10.1057/s10713-019-00046-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1057/s10713-019-00046-8

Keywords

JEL classification

Navigation