Skip to main content
Log in

Enhanced upconversion luminescence through core/shell structures and its application for detecting organic dyes in opaque fishes

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Here, we report the enhanced upconversion luminescence of NaLuF4:18%Yb3+,2%Er3+ through core/shell structures. Among NaYF4, NaGdF4, and NaLuF4 shells, the first one presents the highest efficiency. These upconversion fluorescent nanoprobes with an oleic acid/PEG hybrid ligand can efficiently capture Rhodamine B (RB) and sodium fluorescein (SF) in opaque fishes to present their residues in vivo through luminescence resonant energy transfer (LRET) processes. It can be confirmed based on LRET technology that no RB is absorbed by opaque fishes after incubating in the aqueous solution of 1 µg ml-1 RB for one day, while SF residue can be obviously detected after incubating in the aqueous solution of 1 µg ml-1 SF for one day. The merit of this LRET technology with the upconversion nanoparticle (UCNP) donor is ascribed to the deep penetration depth of the infrared pumping laser and high signal to noise ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Aksu, Application of biosorption for the removal of organic pollutants: a review Process, Biochemistry, 2005, 40, 997–1026.

    CAS  Google Scholar 

  2. A. Carlos, M. Huitle, S. G. Ferro, Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes, Chem. Soc. Rev., 2006, 35, 1324–1340.

    Article  Google Scholar 

  3. T. Zhu, J. S. Chen, X. W. Lou, Highly efficient removal of organic dyes from waste water using hierarchical NiO spheres with high surface area, J. Phys. Chem. C, 2012, 116, 6873–6878.

    Article  CAS  Google Scholar 

  4. S. B. Wang, Y. Boyjoo, A. Choueib, Z. H. Zhu, Removal of dyes from aqueous solution using fly ash and red mud, Water Res., 2005, 39, 129–138.

    Article  CAS  PubMed  Google Scholar 

  5. F. A. Pavan, S. L. P. Dias, E. C. Lima, E. V. Benvenutti, Removal of Congo red from aqueous solution by anilinepropylsilica xerogel, Dyes Pigm., 2008, 76, 64–69.

    Article  CAS  Google Scholar 

  6. Z. A. Qodah, Adsorption of dyes using shale oil ash, Water Res., 2000, 34, 4295–4303.

    Article  Google Scholar 

  7. P. Janos, H. Buchtova, M. Ryznarova, Sorption of dyes from aqueous solutions onto fly ash, Water Res., 2003, 37, 4938–4944.

    Article  CAS  PubMed  Google Scholar 

  8. W. Tanthapanichakoon, P. Ariyadejwanich, P. Japthong, K. Nakagawa, S. R. Mukai, H. Tamon, Adsorption-desorption characteristics of phenol and reactive dyes from aqueous solution on mesoporous activated carbon prepared from waste tires, Water Res., 2005, 39, 1347–1353.

    Article  CAS  PubMed  Google Scholar 

  9. R. G. Ute, M. Grabolle, C. J. Sara, R. Nitschke, T. Nann, Quantum dots versus organic dyes as fluorescent labels, Nat. Methods, 2008, 5, 763–775.

    Article  CAS  Google Scholar 

  10. I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, J. M. Mauro, Self-assembled nanoscale biosensors based on quantum dot FRET donors, Nat. Mater., 2003, 9, 630–638.

    Article  CAS  Google Scholar 

  11. M. A. Rizzo, G. H. Springer, B. Granada, D. W. Piston, An improved cyan fluorescent protein variant useful for FRET, Nat. Biotechnol., 2004, 4, 445–449.

    Article  CAS  Google Scholar 

  12. A. W. Nguyen, P. S. Daugherty, Evolutionary optimization of fluorescent proteins for intracellular FRET, Nat. Biotechnol., 2005, 3, 355–360.

    Article  CAS  Google Scholar 

  13. X. Zhang, Y. Xiao, X. Qian, A ratiometric fluorescent probe based on FRET for imaging Hg2+ ions in living cells, Angew. Chem., Int. Ed., 2008, 42, 8025–8029.

    Article  CAS  Google Scholar 

  14. D. Q. Chen, L. Liu, P. Huang, M. Y. Ding, J. S. Zhong, Z. G. Ji, Nd3+-sensitized Ho3+ single-band red upconversion luminescence in core-shell nanoarchitecture, J. Phys. Chem. Lett., 2015, 6, 2833–2851.

    Article  CAS  PubMed  Google Scholar 

  15. C. Warren, W. Chan, S. M. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science, 1998, 281, 2016–2018.

    Article  Google Scholar 

  16. I. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing, Nat. Mater., 2005, 4, 435–446.

    Article  CAS  PubMed  Google Scholar 

  17. W. C. Chan, D. J. Maxwell, X. H. Gao, R. E. Bailey, M. Y. Han, S. M. Nie, Luminescent quantum dots for multiplexed biological detection and imaging, Curr. Opin. Biotechnol., 2002, 13, 40–46.

    Article  CAS  PubMed  Google Scholar 

  18. B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, A. Libchaber, In vivo imaging of quantum dots encapsulated in phospholipid micelles, Science, 2002, 298, 1759–1762.

    Article  CAS  PubMed  Google Scholar 

  19. J. C. Boyer, L. A. Cuccia, J. A. Capobianco, Synthesis of colloidal upconverting NaYF4: Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals, Nano Lett., 2007, 7, 847–852.

    Article  CAS  PubMed  Google Scholar 

  20. H. R. Petty, Fluorescence microscopy: established and emerging methods, experimental strategies, and applications in immunology, Microsc. Res. Tech., 2007, 70, 687–709.

    Article  PubMed  Google Scholar 

  21. D. Q. Chen, P. Huang, Highly intense upconversion luminescence in Yb/Er: NaGdF4@NaYF4 core-shell nanocrystals with complete shell enclosure on core, Dalton Trans., 2014, 43, 11299–11309.

    Article  CAS  PubMed  Google Scholar 

  22. F. Wang, D. Banerjee, Y. S. Liu, X. Y. Chen, X. G. Liu, Upconversion nanoparticles in biological labeling, imaging, and therapy, Analyst, 2010, 135, 1797–2160.

    Article  Google Scholar 

  23. M. Wang, C. C. Mi, W. X. Wang, C. H. Liu, Y. F. Wu, Z. R. Xu, C. B. Mao, S. K. Xu, Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4:Yb,Er upconversion nanoparticles, ACS Nano, 2009, 3, 1580–1586.

    Article  CAS  PubMed  Google Scholar 

  24. L. Cheng, K. Yang, M. W. Shao, S. T. Lee, Z. Liu, Multicolor in vivo imaging of upconversion nanoparticles with emissions tuned by luminescence resonance energy transfer, J. Phys. Chem. C, 2011, 115, 2686–2692.

    Article  CAS  Google Scholar 

  25. Z. Q. Li, Y. Zhang, S. Jiang, Multicolor core/shell-structured upconversion fluorescent nanoparticles, Adv. Mater., 2008, 20, 4765–4769.

    Article  CAS  Google Scholar 

  26. Z. H. Chen, X. F. Wu, P. Hu, S. G. Hu, Y. X. Liu, Multicolor lupconversion NaLuF4 fluorescent nanoprobe for plant cell imaging and detection of sodium fluorescein, J. Mater. Chem. C, 2015, 3, 153–161.

    Article  CAS  Google Scholar 

  27. Z. H. Chen, X. F. Wu, S. G. Hu, P. Hu, H. Y. Yan, Z. J. Tang, Y. X. Liu, Upconversion NaLuF4 fluorescent nanoprobes for jellyfish cell imaging and irritation assessment of organic dyes, J. Mater. Chem. C, 2015, 3, 6067–6076.

    Article  CAS  Google Scholar 

  28. Y. X. Liu, D. S. Wang, J. X. Shi, Q. Peng, Y. D. Li, Magnetic tuning of upconversion luminescence in lanthanide-doped bifunctional nanocrystals, Angew. Chem., Int. Ed., 2013, 52, 4366–4369.

    Article  CAS  Google Scholar 

  29. X. C. Ye, J. E. Collins, Y. J. Kang, J. Chen, D. T. N. Chen, A. G. Yodh, C. B. Murray, Morphologically controlled synthesis of colloidal upconversion nanophosphors and their shape-directed self-assembly, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 22430–22435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. J. N. Shan, Y. G. Ju, A single-step synthesis and the kinetic mechanism for monodisperse and hexagonal-phase NaYF4:Yb, Er upconversion nanophosphors, Nanotechnology, 2009, 20, 275603–275616.

    Article  PubMed  CAS  Google Scholar 

  31. D. D. Li, Q. Y. Shao, Y. Dong, J. Q. Jiang, A facile synthesis of small-sized and monodisperse hexagonal NaYF4:Yb3+,Er3+ nanocrystals, Chem. Commun., 2014, 10, 1039–1042.

    Google Scholar 

  32. D. Yuan, M. C. Tan, R. E. Riman, G. M. Chow, A comprehensive study on the size effects of the optical properties of NaYF4:Yb,Er nanocrystals, J. Phys. Chem. C, 2013, 117, 13297–13304.

    Article  CAS  Google Scholar 

  33. M. M. Lage, R. L. Moreira, F. M. Matinaga, J. Y. Gesland, Raman and infrared reflectivity determination of phonon modes and crystal structure of Czochralski-grown NaLnF4 (Ln) La, Ce, Pr, Sm, Eu, and Gd) single crystals, Chem. Mater., 2005, 17, 4523–4529.

    Article  CAS  Google Scholar 

  34. E. M. Chan, D. J. Gargas, P. J. Schuck, D. J. Milliron, Concentrating and recycling energy in lanthanide codopants for Efficient and spectrally pure emission: the case of NaYF4:Er3+/Tm3+ upconverting nanocrystals, J. Phys. Chem. B, 2012, 116, 10561–10570.

    Article  CAS  PubMed  Google Scholar 

  35. F. Wang, R. Deng, J. Wang, Q. X. Wang, Y. Han, H. M. Zhu, X. Y. Chen, X. G. Liu, Tuning upconversion through energy migration in core-shell nanoparticles, Nat. Mater., 2011, 10, 968–973.

    Article  CAS  PubMed  Google Scholar 

  36. L. Pauling, The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atomst, Am. Chem. Soc., 1932, 54, 3570–3582.

    Article  CAS  Google Scholar 

  37. J. N. Shan, M. J. Uddi, R. Wei, N. Yao, Y. G. Ju, The hidden effects of particle shape and criteria for evaluating the upconversion luminescence of the lanthanide doped nanophosphors, J. Phys. Chem. C, 2010, 114, 2452–2461.

    Article  CAS  Google Scholar 

  38. Y. Liu, Q. Yang, G. Ren, C. Xu, Y. Zhang, Relationship between microstructure and the achieving of the single-band red upconversion fluorescence of Er3+/Yb3+ codoped crystallites, J. Alloys Compd., 2009, 467, 351–356.

    Article  CAS  Google Scholar 

  39. Y. Wang, F. Nan, Z. Cheng, J. Han, Z. Hao, H. Xu, Q. Wang, Strong tunability of cooperative energy transfer in Mn2+-doped (Yb3+, Er3+)/NaYF4 nanocrystals by coupling with silver nanorod array, Nano Res., 2015, 8, 2970–2977.

    Article  CAS  Google Scholar 

  40. S. Fang, C. Wang, J. Xiang, L. Cheng, X. Song, L. Xu, R. Peng, Z. Liu, Aptamer-conjugated upconversion nanoprobes assisted by magnetic separation for effective isolation and sensitive detection of circulating tumor cells, Nano Res., 2014, 7, 1327–1336.

    Article  CAS  Google Scholar 

  41. J. C. Boyer, L. A. Cuccia, J. A. Capobianco, Synthesis of colloidal upconverting NaYF4:Er3+ /Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals, Nano Lett., 2007, 7, 848–852.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunxin Liu.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/C5PP00310E

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, P., Wu, X., Hu, S. et al. Enhanced upconversion luminescence through core/shell structures and its application for detecting organic dyes in opaque fishes. Photochem Photobiol Sci 15, 260–265 (2016). https://doi.org/10.1039/c5pp00310e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00310e

Navigation