Skip to main content
Log in

Strong tunability of cooperative energy transfer in Mn2+-doped (Yb3+, Er3+)/NaYF4 nanocrystals by coupling with silver nanorod array

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Fluorescent rare-earth ions are useful for efficient energy transfer via multichannels with different properties. Tuning these transfer processes in functional rare-earth materials has attracted considerable attention to satisfy the various demands of diverse practical applications. In this study, strong tunabilities of cooperative energy transfer and nonlinear upconversion emissions are realized using (Yb3+, Er3+)/NaYF4 nanocrystals with and without doped Mn2+ ions by adopting a plasmonic nanocavity composed of a silver nanorod array. The plasmon nanocavity can not only increase the energy transfer between Mn2+ and (Yb3+, Er3+) but also significantly enhance the radiative emission. This reveals a prominent nonlinear gain in the nanocavity nanosystems. These observations suggest the prospective applications in the design and preparation of rare-earth nanocrystals with excellent tunabilities of multiple functionalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mao, Y. B.; Huang, J. Y.; Ostroumov, R.; Wang, K. L.; Chang, J. P. Synthesis and luminescence properties of erbium-doped Y2O3 nanotubes. J. Phys. Chem. C, 2008, 112 2278–2285.

    Article  Google Scholar 

  2. Mao, Y. B.; Tran, T.; Guo, X.; Huang, J. Y.; Shih, C. K.; Wang, K. L.; Chang, J. P. Luminescence of nanocrystalline erbium-doped yttria. Adv. Func. Mater., 2009, 19 748–754.

    Article  Google Scholar 

  3. Ye, X. C.; Collins, J. E.; Kang, Y. J.; Chen, J.; Chen, D. T. N.; Yodh, A. G.; Murray, C. B. Morphologically controlled synthesis of colloidal upconversion nanophosphors and their shape-directed self-assembly. Proc. Natl. Acad. Sci. USA, 2010, 107 22430–22435.

    Article  Google Scholar 

  4. Gai, S. L.; Li, C. X.; Yang, P. P.; Lin, J. Recent progress in rare earth micro/nanocrystals: Soft chemical synthesis, luminescent properties, and biomedical applications. Chem. Rev., 2014, 114 2343–2389.

    Article  Google Scholar 

  5. Chen, G. Y.; Qiu, H. L.; Prasad, P. N.; Chen, X. Y. Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics. Chem. Rev., 2014, 114 5161–5214.

    Article  Google Scholar 

  6. Huang, X. Y.; Han, S. Y.; Huang, W.; Liu, X. G. Enhancing solar cell efficiency: The search for luminescent materials as spectral converters. Chem. Soc. Rev., 2013, 42 173–201.

    Article  Google Scholar 

  7. Zhang, F.; Wan, Y.; Yu, T.; Zhang, F. Q.; Shi, Y. F.; Xie, S. H.; Li, Y. G.; Xu, L.; Tu, B.; Zhao, D. Y. Uniform nanostructured arrays of sodium rare-earth fluorides for highly efficient multicolor upconversion luminescence. Angew. Chem., Int. Ed., 2007, 46 7976–7979.

    Article  Google Scholar 

  8. Yu, X. F.; Chen, L. D.; Li, M.; Xie, M. Y.; Zhou, L.; Li, Y.; Wang, Q. Q. Highly efficient fluorescence of NdF3/SiO2 core/shell nanoparticles and the applications for in vivo NIR detection. Adv. Mater., 2008, 20 4118–4123.

    Article  Google Scholar 

  9. Ehlert, O.; Thomann, R.; Darbandi, M.; Nann, T. A fourcolor colloidal multiplexing nanoparticle system. ACS Nano 2008, 2, 120–124.

    Article  Google Scholar 

  10. Yi, G. S.; Lu, H. C.; Zhao, S. Y.; Ge, Y.; Yang, W. J.; Chen, D. P.; Guo, L. H. Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb,Er infrared-to-visible upconversion phosphors. Nano Lett., 2004, 4 2191–2196.

    Article  Google Scholar 

  11. Chatterjee, D. K.; Rufaihah, A. J.; Zhang, Y. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials, 2008, 29 937–943.

    Article  Google Scholar 

  12. Nyk, M.; Kumar, R.; Ohulchanskyy, T. Y.; Bergey, E. J.; Prasad, P. N. High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared upconversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett., 2008, 8 3834–3838.

    Article  Google Scholar 

  13. Heer, S.; Kömpe, K.; Gü del, H. U.; Haase, M. Highly efficient multicolor upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv. Mater., 2004, 16 2102–2105.

    Article  Google Scholar 

  14. Wang, F.; Liu, X. G. Upconversion multicolor fine-tuning: Visible to near infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc., 2008, 130 5642–5643.

    Article  Google Scholar 

  15. Shalav, A.; Richards, B. S.; Trupke, T.; Krämer, K. W.; Güdel, H. U. Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response. Appl. Phys. Lett., 2005, 86 013505.

  16. van der Ende, B. M.; Aarts, L.; Meijerink, A. Lanthanide ions as spectral converters for solar cells. Phys. Chem. Chem. Phys., 2009, 11 11081–11095.

    Article  Google Scholar 

  17. Wang, H. Q.; Batentschuk, M.; Osvet, A.; Pinna, L.; Brabec, C. J. Rare-earth ion doped up-conversion materials for photovoltaic applications. Adv. Mater., 2011, 23 2675–2680.

    Article  Google Scholar 

  18. Gorris, H. H.; Ali, R.; Saleh, S. M.; Wolfbeis, O. S. Tuning the dual emission of photon-upconverting nanoparticles for ratiometric multiplexed encoding. Adv. Mater., 2011, 23 1652–1655.

    Article  Google Scholar 

  19. Miyakawa, T.; Dexter, D. L. Cooperative and stepwise excitation of luminescence: Trivalent rare-earth ions in Yb3+-sensitized crystals. Phys. Rev. B, 1970, 1 70–80.

    Article  Google Scholar 

  20. Tian, G.; Gu, Z. J.; Zhou, L. J.; Yin, W. Y.; Liu, X. X.; Yan, L.; Jin, S.; Ren, W. L.; Xing, G. M.; Li, S. J. et al. Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery. Adv. Mater., 2012, 24 1226–1231.

    Article  Google Scholar 

  21. Bai, Z. H.; Lin, H.; Johnson, J.; Gui, S. C. R.; Imakita, K.; Montazami, R.; Fujii, M.; Hashemi, N. The single-band red upconversion luminescence from morphology and size controllable Er3+/Yb3+ doped MnF2 nanostructures. J. Mater. Chem. C, 2014, 2 1736–1741.

    Article  Google Scholar 

  22. Wang, J.; Wang, F.; Wang, C.; Liu, Z.; Liu, X. G. Singleband upconversion emission in lanthanide-doped KMnF3 nanocrystals. Angew. Chem., Int. Ed., 2011, 50 10369–10372.

    Google Scholar 

  23. Chen, G. Y.; Liu, Y.; Zhang, Y. G.; Somesfalean, G.; Zhang, Z. G.; Sun, Q.; Wang, F. P. Bright white upconversion luminescence in rare-earth-ion-doped Y2O3 nanocrystals. Appl. Phys. Lett., 2007, 91 133103.

    Article  Google Scholar 

  24. Wang, F.; Deng, R. R.; Wang, J.; Wang, Q. X.; Han, Y.; Zhu, H. M.; Chen, X. Y.; Liu, X. G. Tuning upconversion through energy migration in core–shell nanoparticles. Nat. Mater., 2011, 10 968–973.

    Article  Google Scholar 

  25. Su, Q. Q.; Han, S. Y.; Xie, X. J.; Zhu, H. M.; Chen, H. Y.; Chen, C.-K.; Liu, R.-S.; Chen, X. Y.; Wang, F.; Liu, X. G. The effect of surface coating on energy migration-mediated upconversion. J. Am. Chem. Soc., 2012, 134 20849–20857.

    Article  Google Scholar 

  26. Chen, G. Y.; Ohulchanskyy, T. Y.; Kachynski, A.; Ågren, H.; Prasad, P. N. Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF4:Er3+ nanocrystals under excitation at 1490 nm. ACS Nano, 2011, 5 4981–4986.

    Article  Google Scholar 

  27. Song, E. H.; Ding, S.; Wu, M.; Ye, S.; Xiao, F.; Dong, G. P.; Zhang, Q. Y. Temperature-tunable upconversion luminescence of pervskite nanocrystals KZnF3:Yb3+,Mn2+. J. Mater. Chem. C, 2013, 1 4209–4215.

    Article  Google Scholar 

  28. Jackson, J. B.; Halas, N. J. Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates. Proc. Natl. Acad. Sci. USA, 2004, 101 17930–17935.

    Article  Google Scholar 

  29. Nan, F.; Cheng, Z. Q.; Wang, Y. L.; Zhang, Q.; Zhou, L.; Yang, Z. J.; Zhong, Y. T.; Liang, S.; Xiong, Q. H.; Wang, Q. Q. Manipulating nonlinear emission and cooperative effect of CdSe/ZnS quantum dots by coupling to a silver nanorod complex cavity. Sci. Rep., 2014, 4 4839.

  30. Hillenbrand, R.; Taubner, T.; Keilmann, F. Phonon-enhanced light–matter interaction at the nanometre scale. Nature, 2002, 418 159–162.

    Article  Google Scholar 

  31. Schuller, J. A.; Barnard, E. S.; Cai, W. S.; Jun, Y. C.; White, J. S.; Brongersma, M. L. Plasmonics for extreme light concentration and manipulation. Nat. Mater., 2010, 9 193–204.

    Article  Google Scholar 

  32. Maier, S. A.; Kik, P. G.; Atwater, H. A.; Meltzer, S.; Harel, E.; Koel, B. E.; Requicha, A. A. G. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater., 2003, 2 229–232.

    Article  Google Scholar 

  33. Saboktakin, M.; Ye, X. C.; Oh, S. J.; Hong, S. H.; Fafarman, A. T.; Chettiar, U. K.; Engheta, N.; Murray, C. B.; Kagan, C. R. Metal-enhanced upconversion luminescence tunable through metal nanoparticle–nanophosphor separation. ACS Nano, 2012, 6 8758–8766.

    Article  Google Scholar 

  34. Saboktakin, M.; Ye, X. C.; Chettiar, U. K.; Engheta, N.; Murray, C. B.; Kagan, C. R. Plasmonic enhancement of nanophosphor upconversion luminescence in Au nanohole arrays. ACS Nano, 2013, 7 7186–7192.

    Article  Google Scholar 

  35. Greybush, N. J.; Saboktakin, M.; Ye, X. C.; Della Giovampaola, C.; Oh, S. J.; Berry, N. E.; Engheta, N.; Murray, C. B.; Kagan, C. R. Plasmon-enhanced upconversion luminescence in single nanophosphor–nanorod heterodimers formed through template-assisted self-assembly. ACS Nano, 2014, 8 9482–9491.

  36. Yuan, P. Y.; Lee, Y. H.; Gnanasammandhan, M. K.; Guan, Z. P.; Zhang, Y.; Xu, Q. H. Plasmon enhanced upconversion luminescence of NaYF4:Yb,Er@SiO2@Ag core-shell nanocomposites for cell imaging. Nanoscale, 2012, 4 5132–5137.

    Article  Google Scholar 

  37. Schietinger, S.; Aichele, T.; Wang, H. Q.; Nann, T.; Benson, O. Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals. Nano Lett., 2009, 10 134–138.

    Article  Google Scholar 

  38. Schietinger, S.; Menezes, L. de S.; Lauritzen, B.; Benson, O. Observation of size dependence in multicolor upconversion in single Yb3+, Er3+ codoped NaYF4 nanocrystals. Nano Lett.,, 2009, 9 2477–2481.

    Article  Google Scholar 

  39. Zhang, H.; Li, Y. J.; Ivanov, I. A.; Qu, Y. Q.; Huang, Y.; Duan, X. F. Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells. Angew. Chem., 2010, 122 2927–2930.

    Article  Google Scholar 

  40. Li, Z. Q.; Wang, L. M.; Wang, Z. Y.; Liu, X. H.; Xiong, Y. J. Modification of NaYF4:Yb,Er@SiO2 nanoparticles with gold nanocrystals for tunable green-to-red upconversion emissions. J. Phys. Chem. C, 2011, 115 3291–3296.

    Article  Google Scholar 

  41. Wawrzynczyk, D.; Bednarkiewicz, A.; Nyk, M.; Gordel, M.; Strek, W.; Samoc, M. Modulation of up-conversion luminescence of lanthanide(III) ion co-doped NaYF4 nanoparticles using gold nanorods. Opt. Mater., 2012, 34 1708–1712.

    Article  Google Scholar 

  42. Wang, F.; Liu, X. G. Upconversion multicolor fine-tuning: Visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc., 2008, 130 5642–5643.

    Article  Google Scholar 

  43. Sun, Q. C.; Mundoor, H.; Ribot, J. C.; Singh, V.; Smalyukh, I. I.; Nagpal, P. Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in dopedlanthanide nanocrystals. Nano Lett., 2014, 14 101–106.

    Article  Google Scholar 

  44. Pollnau, M.; Gamelin, D. R.; Lü thi, S. R.; Güdel, H. U.; Hehlen, M. P. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys. Rev. B, 2000, 61 3337–3346.

    Article  Google Scholar 

  45. Zhang, H.; Xu, D.; Huang, Y.; Duan, X. F. Highly spectral dependent enhancement of upconversion emission with sputtered gold island films. Chem. Commun., 2011, 47 979–981.

    Article  Google Scholar 

  46. Verhagen, E.; Kuipers, L.; Polman, A. Enhanced nonlinear optical effects with a tapered plasmonic waveguide. Nano Lett., 2007, 7 334–337.

    Article  Google Scholar 

  47. Paudel, H. P.; Zhong, L. L.; Bayat, K.; Baroughi, M. F.; Smith, S.; Lin, C. K.; Jiang, C. Y.; Berry, M. T.; May, P. S. Enhancement of near-infrared-to-visible upconversion luminescence using engineered plasmonic gold surfaces. J. Phys. Chem. C, 2011, 115 19028–19036.

    Article  Google Scholar 

  48. Wang, G. F.; Qin, W. P.; Wang, L. L.; Wei, G. D.; Zhu, P. F.; Kim, R. Intense ultraviolet upconversion luminescence from hexagonal NaYF4: Yb3+/Tm3+ microcrystals. Opt. Express, 2008, 16 11907–11914.

    Article  Google Scholar 

  49. Suyver, J. F.; Grimm, J.; van Veen, M. K.; Biner, D.; Krämer, K. W.; Güdel, H. U. Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+. J. Lumin., 2006, 117 1–12.

    Article  Google Scholar 

  50. Shan, J. N.; Uddi, M.; Wei, R.; Yao, N.; Ju, Y. G. The hidden effects of particle shape and criteria for evaluating the upconversion luminescence of the lanthanide doped nanophosphors. J. Phys. Chem. C, 2010, 114 2452–2461.

    Article  Google Scholar 

  51. Krämer, K. W.; Biner, D.; Frei, G.; Güdel, H. U.; Hehlen, M. P.; Lü thi, S. R. Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors. Chem. Mater., 2004, 16 1244–1251.

    Article  Google Scholar 

  52. Wang, Y. L.; Zhang, J. P.; Han, J. B.; Hao, Z. H.; Wang Q. Q. High magnetic field and temperature tuning of up-conversion luminescence in Mn2+-doped (Er3+/Yb3+): NaYF4. J. Appl. Phys., 2015, 117 083903.

  53. Zhou, Z. K.; Peng, X. N.; Yang, Z. J.; Zhang, Z. S.; Li, M.; Su, X. R.; Zhang, Q.; Shan, X. Y.; Wang, Q. Q.; Zhang, Z. Y. Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission. Nano Lett., 2011, 11 49–55.

    Article  Google Scholar 

  54. Zhou, Z. K.; Li, M.; Yang, Z. J.; Peng, X. N.; Su, X. R.; Zhang, Z. S.; Li, J. B.; Kim, N. C.; Yu, X. F.; Zhou, L. et al. Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging. ACS Nano, 2010, 4 5003–5010.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongxing Xu or Ququan Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Nan, F., Cheng, Z. et al. Strong tunability of cooperative energy transfer in Mn2+-doped (Yb3+, Er3+)/NaYF4 nanocrystals by coupling with silver nanorod array. Nano Res. 8, 2970–2977 (2015). https://doi.org/10.1007/s12274-015-0802-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0802-2

Keywords

Navigation