Skip to main content
Log in

Effect of hydrogen bonding and complexation with metal ions on the fluorescence of luotonin A

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Fluorescence characteristics of a biologically active natural alkaloid, luotonin A (LuA), were studied by steady-state and time-resolved spectroscopic methods. The rate constant of the radiationless deactivation from the singlet-excited state diminished by more than one order of magnitude when the solvent polarity was changed from toluene to water. Dual emission was found in polyfluorinated alcohols of large hydrogen bond donating ability due to photoinitiated proton displacement along the hydrogen bond. In CH2Cl2, LuA produced both 1: 1 and 1: 2 hydrogen-bonded complexes with hexafluoro-2-propanol (HFIP) in the ground state. Photoexcitation of the 1: 2 complex led to protonated LuA, whose fluorescence appeared at a long wavelength. LuA served as a bidentate ligand forming 1: 1 complexes with metal ions in acetonitrile. The stability of the complexes diminished in the series of Cd2+ ]s> Zn2+ > Ag+, and upon competitive binding of water to the metal cations. The effect of chelate formation on the fluorescent properties was revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Waluk, Hydrogen-bonding-induced phenomena in bifunctional heteroazaaromatics, Acc. Chem. Res., 2003, 36, 832–838.

    Article  CAS  PubMed  Google Scholar 

  2. J. Dobkowski, J. Herbich, V. Galievsky, R. P. Thummel, F. Y. Wu, J. Waluk, Diversity of excited state deactivation paths in heteroazaaromatics with multiple intermolecular hydrogen bonds, Ber. Bunsen-Ges. Phys. Chem., 1998, 102, 469–475.

    Article  CAS  Google Scholar 

  3. V. Vetokhina, K. Dobek, M. Kijak, I. I. Kamińska, K. Muller, W. R. Thiel, J. Waluk, J. Herbich, Three modes of proton transfer in one chromophore: photoinduced tautomerization in 2-(1H-pyrazol-5-yl)pyridines, their dimers and alcohol complexes, ChemPhysChem, 2012, 13, 3661–3671.

    Article  CAS  PubMed  Google Scholar 

  4. C. C. Cheng, C. P. Chang, W. S. Yu, F. T. Hung, Y. I. Liu, G. R. Wu, P. T. Chou, Comprehensive studies on dual excitation behavior of double proton versus charge transfer in 4-(N-substituted amino)-1H-pyrrolo[2,3-b]pyridines, J. Phys. Chem. A, 2003, 107, 1459–1471.

    Article  CAS  Google Scholar 

  5. P. Nikolov, H. Görner, Excimer fluorescence from acridine and diaza-heterocyclic hydrocarbons in non-polar media at low temperatures, J. Photochem. Photobiol., A, 1996, 101, 137–144.

    Article  CAS  Google Scholar 

  6. Z. Miskolczy, M. Megyesi, L. Biczók, H. Görner, Effect of electrolytes, nucleotides and DNA on the fluorescence of flavopereirine natural alkaloid, Photochem. Photobiol. Sci., 2011, 10, 592–600.

    Article  CAS  PubMed  Google Scholar 

  7. J. C. Penedo, J. L. P. Lustres, I. G. Lema, M. C. R. Rodríguez, M. Mosquera, F. Rodríguez-Prieto, Solvent-dependent ground- and excited-state tautomerism in 2-(6′-hydroxy-2′-pyridyl)benzimidazole, J. Phys. Chem. A, 2004, 108, 6117–6126.

    Article  CAS  Google Scholar 

  8. A. Maliakal, G. Lem, N. J. Turro, R. Ravichandran, J. C. Suhadolnik, A. D. DeBellis, M. G. Wood, J. Lau, Twisted intramolecular charge transfer states in 2-arylbenzotriazoles: fluorescence deactivation via intramolecular electron transfer rather than proton transfer, J. Phys. Chem. A, 2002, 106, 7680–7689.

    Article  CAS  Google Scholar 

  9. S. Takeuchi, T. Tahara, The answer to concerted versus step-wise controversy for the double proton transfer mechanism of 7-azaindole dimer in solution, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 5285–5290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. P. Toele, H. Zhang, M. Glasbeek, Femtosecond fluorescence anisotropy studies of excited-state intramolecular double-proton transfer in 2,2′-bipyridyl-3,3-diol in solution, J. Phys. Chem. A, 2002, 106, 3651–3658.

    Article  CAS  Google Scholar 

  11. D. Reyman, M. J. Tapia, C. Carcedo, M. H. Viñas, Photophysical properties of methyl β-carboline-3-carboxylate mediated by hydrogen-bonded complexes–a comparative study in different solvents, Biophys. Chem., 2003, 104, 683–696.

    Article  CAS  PubMed  Google Scholar 

  12. P. T. Chou, Y. I. Liu, G. R. Wu, M. Y. Shiao, W. S. Yu, C. C. Cheng, C. P. Chang, Proton-transfer tautomerism of β-carbolines mediated by hydrogen-bonded complexes, J. Phys. Chem. B, 2001, 105, 10674–10683.

    Article  CAS  Google Scholar 

  13. D. Reyman, C. Diaz-Oliva, F. Hallwass, S. M. Goncalves de Barros, New insights into the photo-tautomerisation process in β-carboline derivatives revealed by NMR spectroscopy, RSC Adv., 2011, 1, 857–865.

    Article  CAS  Google Scholar 

  14. A. Sánchez-Coronilla, M. Balón, M. A. Muñoz, J. Hidalgo, C. Carmona, Ground state isomerism in betacarboline hydrogen bond complexes: the charge transfer nature of its large Stokes shifted emission, Chem. Phys., 2008, 351, 27–32.

    Article  CAS  Google Scholar 

  15. C. Carmona, M. Balón, A. S. Coronilla, M. A. Muñoz, New insights on the excited-state proton-transfer reactions of betacarbolines: cationic exciplex formation, J. Phys. Chem. A, 2004, 108, 1910–1918.

    Article  CAS  Google Scholar 

  16. C. Carmona, M. Galan, G. Angulo, M. A. Munoz, P. Guardado, M. Balon, Ground and singlet excited state hydrogen bonding interactions of betacarbolines, Phys. Chem. Chem. Phys., 2000, 2, 5076–5083.

    Article  CAS  Google Scholar 

  17. Z. Miskolczy, L. Biczók, Fluorescent properties of hydrogen-bonded ellipticine: a special effect of fluoride anion, J. Photochem. Photobiol., A, 2006, 182, 82–87.

    Article  CAS  Google Scholar 

  18. S. Y. Fung, J. Duhamel, P. Chen, Solvent effect on the photophysical properties of the anticancer agent ellipticine, J. Phys. Chem. A, 2006, 110, 11446–11454.

    Article  CAS  PubMed  Google Scholar 

  19. Z. Miskolczy, L. Biczók, I. Jablonkai, Effect of hydroxylic compounds on the photophysical properties of ellipticine and its 6-methyl derivative: the origin of dual fluorescence, Chem. Phys. Lett., 2006, 427, 76–81.

    Article  CAS  Google Scholar 

  20. Z. Miskolczy, L. Biczók, I. Jablonkai, Comment on “Dual fluorescence of ellipticine: excited state proton transfer from solvent versus solvent mediated intramolecular proton transfer”, J. Phys. Chem. A, 2012, 116, 899–900.

    Article  CAS  PubMed  Google Scholar 

  21. Z. Z. Ma, Y. Hano, T. Nomura, Y. J. Chen, Two new pyrroloquinazolinoquinoline alkaloids from Peganum nigellastrum, Heterocycles, 1997, 46, 541–546.

    Article  CAS  Google Scholar 

  22. J. L. Liang, H. C. Cha, Y. Jahng, Recent advances in the studies on luotonins, Molecules, 2011, 16, 4861–4883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. J. S. Yadav, B. V. S. Reddy, Microwave-assisted rapid synthesis of the cytotoxic alkaloid luotonin A, Tetrahedron Lett., 2002, 43, 1905–1907.

    Article  CAS  Google Scholar 

  24. S. Dallavalle, L. Merlini, G. L. Beretta, S. Tinelli, F. Zunino, Synthesis and cytotoxic activity of substituted luotonin A derivitives, Bioorg. Med. Chem. Lett., 2004, 14, 5757–5761.

    Article  CAS  PubMed  Google Scholar 

  25. A. Cagir, S. H. Jones, R. Gao, B. M. Eisenhauer, S. M. Hecht, Luotonin A. A naturally occurring human DNA topoisomerase I poison, J. Am. Chem. Soc., 2003, 125, 13628–13629.

    Article  CAS  PubMed  Google Scholar 

  26. Q. Y. Li, Y. G. Zu, R. Z. Shi, L. P. Yao, Review camptothecin: current perspectives, Curr. Med. Chem., 2006, 13, 2021–2039.

    Article  CAS  PubMed  Google Scholar 

  27. H. B. Zhou, G. S. Liu, Z. J. Yao, Short and efficient total synthesis of luotonin A and 22-hydroxyacuminatine using a common cascade strategy, J. Org. Chem., 2007, 72, 6270–6272.

    Article  CAS  PubMed  Google Scholar 

  28. J. J. Mason, J. Bergman, Total synthesis of luotonin A and 14-substituted analogues, Org. Biomol. Chem., 2007, 5, 2486–2490.

    Article  CAS  PubMed  Google Scholar 

  29. M. C. Tseng, Y. W. Chu, H. P. Tsai, C. M. Lin, J. L. Hwang, Y. H. Chu, One-pot synthesis of luotonin A and its analogues, Org. Lett., 2011, 13, 920–923.

    Article  CAS  PubMed  Google Scholar 

  30. P. Mussardo, E. Corda, V. Gonzalez-Ruiz, J. Rajesh, S. Girotti, M. A. Martin, A. I. Olives, Study of non-covalent interactions of luotonin A derivatives and the DNA minor groove as a first step in the study of their analytical potential as DNA probes, Anal. Bioanal. Chem., 2011, 400, 321–327.

    Article  CAS  PubMed  Google Scholar 

  31. V. Gonzalez-Ruiz, P. Mussardo, E. Corda, S. Girotti, A. I. Olives, M. A. Martin, Liquid chromatographic analysis of the anticancer alkaloid luotonin A and some new derivatives in human serum samples, J. Sep. Sci., 2010, 33, 2086–2093.

    Article  CAS  PubMed  Google Scholar 

  32. V. Gonzalez-Ruiz, Y. Gonzalez-Cuevas, S. Arunachalam, M. A. Martin, A. I. Olives, P. Ribelles, M. T. Ramos, J. C. Menendez, Fluorescence properties of the anti-tumour alkaloid luotonin A and new synthetic analogues: pH modulation as an approach to their fluorimetric quantitation in biological samples, J. Lumin., 2012, 132, 2468–2475.

    Article  CAS  Google Scholar 

  33. W. H. Melhuish, Quantum efficiencies of fluorescence of organic substances: effect of solvent and concentration of the fluorescent solute, J. Phys. Chem., 1961, 65, 229–235.

    Article  CAS  Google Scholar 

  34. K. Nagy, S. Göktürk, L. Biczók, Effect of microenvironment on the fluorescence of 2-hydroxy-substituted Nile Red dye: a new fluorescent probe for the study of micelles, J. Phys. Chem. A, 2003, 107, 8784–8790.

    Article  CAS  Google Scholar 

  35. G. Peintler, I. Nagypál, A. Jancsó, I. R. Epstein, K. Kustin, Extracting experimental information from large matrixes. 1. A new algorithm for the application of matrix rank analysis, J. Phys. Chem. A, 1997, 101, 8013–8020.

    Article  CAS  Google Scholar 

  36. C. Reichardt, Solvatochromic dyes as solvent polarity indicators, Chem. Rev., 1994, 94, 2319–2358.

    Article  CAS  Google Scholar 

  37. J. Dey, I. M. Warner, Spectroscopic and photophysical studies of the anticancer drug: camptothecin, J. Lumin., 1997, 71, 105–114.

    Article  CAS  Google Scholar 

  38. E. C. Lim, Proximity effect in molecular photophysics: dynamical consequences of pseudo-Jahn–Teller interaction, J. Phys. Chem., 1986, 90, 6770–6777.

    Article  CAS  Google Scholar 

  39. M. H. Abraham, P. L. Grellier, D. V. Prior, P. P. Duce, J. J. Morris, P. J. Taylor, Hydrogen bonding. Part 7. A scale of solute hydrogen-bond acidity based on log K values for complexation in tetrachloromethane, J. Chem. Soc., Perkin Trans. 2, 1989, 699–711.

    Google Scholar 

  40. M. H. Abraham, Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical processes, Chem. Soc. Rev., 1993, 22, 73–83.

    Article  CAS  Google Scholar 

  41. B. Valeur, Molecular Fluorescence, Principles and Applications, Wiley-VCH, Weinheim, 2002.

    Google Scholar 

  42. Y. Marcus, A simple empirical model describing the thermodynamics of hydration of ions of widely varying charges, sizes, and shapes, Biophys. Chem., 1994, 51, 111–127.

    Article  CAS  Google Scholar 

  43. C. S. Babu, C. Lim, Empirical force fields for biologically active divalent metal cations in water, J. Phys. Chem. A, 2005, 110, 691–699.

    Article  CAS  Google Scholar 

  44. Y. Marcus, M. J. Kamlet, R. W. Taft, Linear solvation energy relationships: standard molar Gibbs free energies and enthalpies of transfer of ions from water into nonaqueous solvents, J. Phys. Chem., 1988, 92, 3613–3622.

    Article  CAS  Google Scholar 

  45. Y. Marcus, Preferential solvation of silver(i), copper(i) and copper(ii) ions in aqueous acetonitrile, J. Chem. Soc., Dalton Trans., 1991, 2265–2268.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Biczók.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miskolczy, Z., Biczók, L. Effect of hydrogen bonding and complexation with metal ions on the fluorescence of luotonin A. Photochem Photobiol Sci 12, 936–943 (2013). https://doi.org/10.1039/c3pp50011j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp50011j

Navigation