Skip to main content

Theoretical Principles of Fluorescence Spectroscopy

  • Chapter
  • First Online:
Fluorescence Studies of Polymer Containing Systems

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 16))

Abstract

The chapter outlines general principles of fluorescence spectroscopy. Basic principles of radiative and nonradiative transitions (including the Jablonski diagram and Franck–Condon principle) are described and explained. The fundamentals of important fluorescence techniques, such as the steady-state and time-resolved measurements, fluorescence anisotropy, solvent relaxation method, fluorescence quenching, and nonradiative energy transfer, are discussed in detail. Special attention is devoted to the fast dynamics of individual transitions and processes influencing them at the molecular level. The end of the chapter focuses on excimers and exciplexes and mainly on the weakly bound complexes (so-called J and H aggregates), because the literature describing their behavior is relatively rare and pertinent pieces of information are not easy to find.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jablonski A (1935) Über den Mechanismus der Photolumineszenz von Farbstoffphosphoren. Zeitschrift für Physik 94:9

    Article  Google Scholar 

  2. Prochazka K, Limpouchova Z, Uhlik F, Kosovan P, Matejicek P, Stepanek M, Uchman M, Kuldova J, Sachl R, Humpolickova J, Hof M, Muller A, Borisov O (2011) Fluorescence spectroscopy as a tool for investigating the self-organized polyelectrolyte systems. Self Organ Nanostruct Amphiphilic Block Copolym I 241:187–249. doi:10.1007/12_2010_56

    Article  CAS  Google Scholar 

  3. Turro NJ, Ramamurthy V, Scaiano JC (2009) Principles of molecular photochemistry: an introduction. University Science, Sausalito

    Google Scholar 

  4. Guillet J (1987) Polymer photophysics and photochemistry: an introduction to the study of photoprocesses in macromolecules. CUP, Cambridge

    Google Scholar 

  5. Fleming G (1986) Chemical applications of ultrafast spectroscopy. Oxford University Press, Oxford

    Google Scholar 

  6. Franck J, Dymond EG (1926) Elementary processes of photochemical reactions. Trans Faraday Soc 21:536–542. doi:10.1039/TF9262100536

    Article  Google Scholar 

  7. Condon E (1926) A theory of intensity distribution in band systems. Phys Rev 28(6):1182–1201

    Article  CAS  Google Scholar 

  8. Lakowicz JR, Masters BR (2008) Principles of fluorescence spectroscopy. J Biomed Opt 13(2):9901

    Article  Google Scholar 

  9. Beer M, Longuethiggins HC (1955) Anomalous light emission of azulene. J Chem Phys 23(8):1390–1391. doi:10.1063/1.1742314

    Article  CAS  Google Scholar 

  10. Winnik MA (1986) Photophysical and photochemical tools in polymer science. Springer, New York

    Book  Google Scholar 

  11. Doi M, See H (1996) Introduction to polymer physics. Clarendon Press Oxford

    Google Scholar 

  12. Michl J, Bonačić-Koutecký V (1990) Electronic aspects of organic photochemistry. Wiley, New York

    Google Scholar 

  13. Kasha M (1952) Collisional perturbation of spin-orbital coupling and the mechanism of fluorescence quenching—a visual demonstration of the perturbation. J Chem Phys 20(1):71–74. doi:10.1063/1.1700199

    Article  CAS  Google Scholar 

  14. Stern O, Volmer M (1919) The extinction period of fluorescence. Phys Z 20:183–188

    CAS  Google Scholar 

  15. Lakowicz, J. (1983) Principles of Fluoresence Spectroscopy, Plenum Press, New York, NY

    Google Scholar 

  16. Forster T (1949) Experimentelle und theoretische untersuchung des zwischenmolekularen ubergangs von elektronenanregungsenergie. Z Naturforsch Sect A A J Phys Sci 4(5):321–327

    Google Scholar 

  17. Forster T (1959) 10th spiers memorial lecture—transfer mechanisms of electronic excitation. Discuss Faraday Soc 27:7–17

    Article  Google Scholar 

  18. Van Der Meer W, Coker G, Chen S-YS (1994) Resonance energy transfer: theory and data. VCH, New York

    Google Scholar 

  19. Haan SW, Zwanzig R (1978) Forster migration of electronic excitation between randomly distributed molecules. J Chem Phys 68(4):1879–1883. doi:10.1063/1.435913

    Article  CAS  Google Scholar 

  20. Ediger MD, Domingue RP, Fayer MD (1984) Picosecond studies of excitation transport in a finite volume—the clustered transport-system octadecyl rhodamine-b in triton x-100 micelles. J Chem Phys 80(3):1246–1253. doi:10.1063/1.446802

    Article  CAS  Google Scholar 

  21. Ediger MD, Fayer MD (1984) Electronic excitation transport in disordered finite volume systems. J Phys Chem 88(25):6108–6116. doi:10.1021/j150669a012

    Article  CAS  Google Scholar 

  22. Ediger MD, Fayer MD (1983) Electronic excited-state transport among molecules distributed randomly in a finite volume. J Chem Phys 78(5):2518–2524. doi:10.1063/1.445003

    Article  CAS  Google Scholar 

  23. Farinha JPS, Spiro JG, Winnik MA (2004) Dipole–dipole electronic energy transfer: fluorescence decay functions for arbitrary distributions of donors and acceptors in systems with cylindrical symmetry. J Phys Chem B 108(42):16392–16400. doi:10.1021/jp048807

    Article  CAS  Google Scholar 

  24. Yekta A, Winnik MA, Farinha JPS, Martinho JMG (1997) Dipole–dipole electronic energy transfer. Fluorescence decay functions for arbitrary distributions of donors and acceptors. 2. Systems with spherical symmetry. J Phys Chem A 101(10):1787–1792. doi:10.1021/jp9633963

    Article  CAS  Google Scholar 

  25. Tcherkasskaya O, Spiro JG, Ni SR, Winnik MA (1996) Energy transfer in restricted geometry: polyisoprene-poly(methyl methacrylate) block copolymer interfaces. J Phys Chem 100(17):7114–7121. doi:10.1021/jp9522021

    Article  CAS  Google Scholar 

  26. Morawetz H (1999) On the versatility of fluorescence techniques in polymer research. J Polym Sci Part A Polym Chem 37(12):1725–1735. doi:10.1002/(sici)1099-0518(19990615)37:12<1725::aid-pola1>3.0.co;2-d

    Article  CAS  Google Scholar 

  27. Chen CT, Morawetz H (1989) Characterization of polymer miscibility by fluorescence techniques—blends of styrene copolymers carrying hydrogen-bond donors with polymethacrylates. Macromolecules 22(1):159–164. doi:10.1021/ma00191a031

    Article  CAS  Google Scholar 

  28. Matejicek P, Uhlik F, Limpouchova Z, Prochazka K, Tuzar Z, Webber S (2002) Experimental study of hydrophobically modified amphiphilic block copolymer micelles using light scattering and nonradiative excitation energy transfer. Macromolecules 35(25):9487–9496. doi:10.1021/ma012074g

    Article  CAS  Google Scholar 

  29. Uhlik F, Limpouchova Z, Jelinek K, Prochazka K (2003) A Monte Carlo study of shells of hydrophobically modified amphiphilic copolymer micelles in polar solvents. J Chem Phys 118(24):11258–11264. doi:10.1063/1.1575732

    Article  CAS  Google Scholar 

  30. Matejicek P, Podhajecka K, Humpolickova J, Uhlik F, Jelinek K, Limpouchova Z, Prochazka K, Spirkova M (2004) Polyelectrolyte behavior of polystyrene-block-poly(methacrylic acid) micelles in aqueous solutions at low ionic strength. Macromolecules 37(26):10141–10154. doi:10.1021/ma049258q

    Article  CAS  Google Scholar 

  31. Soleimani M, Haley JC, Majonis D, Guerin G, Lau W, Winnik MA (2011) Smart polymer nanoparticles designed for environmentally compliant coatings. J Am Chem Soc 133(29):11299–11307. doi:10.1021/ja203080p

    Article  CAS  Google Scholar 

  32. Uhlik F, Limpouchova Z, Matejicek P, Prochazka K, Tuzar Z, Webber SE (2002) Nonradiative excitation energy transfer in hydrophobically modified amphiphilic block copolymer micelles: theoretical model and Monte Carlo simulations. Macromolecules 35(25):9497–9505. doi:10.1021/ma012073o

    Article  CAS  Google Scholar 

  33. Limpouchova Z, Prochazka K (1994) A Monte-Carlo study of insoluble block orientations in swollen cores of multimolecular block-copolymer micelles. Collect Czech Chem Commun 59(4):803–819. doi:10.1135/cccc19940803

    Article  CAS  Google Scholar 

  34. Viduna D, Limpouchova Z, Prochazka K (1997) Conformations of self-avoiding tethered chains and nonradiative energy transfer and migration in dense and constrained systems. A model for cores of polymeric micelles. Macromolecules 30(23):7263–7272. doi:10.1021/ma970002c

    Article  CAS  Google Scholar 

  35. Chakrabarty D, Chakraborty A, Seth D, Sarkar N (2005) Effect of water, methanol, and acetonitrile on solvent relaxation and rotational relaxation of coumarin 153 in neat 1-hexyl-3-methylimidazolium hexafluorophosphate. J Phys Chem A 109(9):1764–1769. doi:10.1021/jp0460339

    Article  CAS  Google Scholar 

  36. Brown R, Middelhoek R, Glasbeek M (1999) Solvation dynamics of fluoroprobe in diethylether. J Chem Phys 111(8):3616–3622. doi:10.1063/1.479641

    Article  CAS  Google Scholar 

  37. Middelhoek ER, Vandermeulen P, Verhoeven JW, Glasbeek M (1995) Picosecond time-dependent stokes shift studies of fluoroprobe in liquid solution. Chem Phys 198(3):373–380. doi:10.1016/0301-0104(95)00219-e

    Article  CAS  Google Scholar 

  38. Rosenthal SJ, Jimenez R, Fleming GR, Kumar PV, Maroncelli M (1994) Solvation dynamics in methanol—experimental and molecular-dynamics simulation studies. J Mol Liq 60(1–3):25–56. doi:10.1016/0167-7322(94)00738-1

    Article  CAS  Google Scholar 

  39. Jimenez R, Fleming GR, Kumar PV, Maroncelli M (1994) Femtosecond solvation dynamics of water. Nature 369(6480):471–473. doi:10.1038/369471a0

    Article  CAS  Google Scholar 

  40. Cichos F, Willert A, Rempel U, vonBorczyskowski C (1997) Solvation dynamics in mixtures of polar and nonpolar solvents. J Phys Chem A 101(44):8179–8185. doi:10.1021/jp9716694

    Article  CAS  Google Scholar 

  41. Molotsky T, Huppert D (2003) Solvation statics and dynamics of coumarin 153 in dioxane-water solvent mixtures. J Phys Chem A 107(41):8449–8457. doi:10.1021/jp034760i

    Article  CAS  Google Scholar 

  42. Das SK, Sahu PK, Sarkar M (2013) Probing the microscopic aspects of 1-butyl-3-methylimidazolium trifluoroacetate ionic liquid and its mixture with water and methanol: a photophysical and theoretical (DFT) study. J Fluoresc 23(6):1217–1227. doi:10.1007/s10895-013-1252-4

    Article  CAS  Google Scholar 

  43. Das SK, Sarkar M (2012) Steady-state and time-resolved fluorescence behavior of coumarin-153 in a hydrophobic ionic liquid and ionic liquid-toluene mixture. J Mol Liq 165:38–43. doi:10.1016/j.molliq.2011.10.004

    Article  CAS  Google Scholar 

  44. Lippert E (1957) Spektroskopische Bestimmung des Dipolmomentes aromatischer Verbindungen im ersten angeregten Singulettzustand. Z Elektrochem 61(8):962–975. doi:10.1002/bbpc.19570610819

    CAS  Google Scholar 

  45. Fee RS, Maroncelli M (1994) Estimating the time-zero spectrum in time-resolved emission measurements of solvation dynamics. Chem Phys 183(2–3):235–247. doi:10.1016/0301-0104(94)00019-0

    Article  CAS  Google Scholar 

  46. Mukherjee S, Sahu K, Roy D, Mondal SK, Bhattacharyya K (2004) Solvation dynamics of 4-aminophthalimide in dioxane-water mixture. Chem Phys Lett 384(1–3):128–133. doi:10.1016/j.cplett.2003.11.098

    Article  CAS  Google Scholar 

  47. Chee CK, Hunt BJ, Rimmer S, Soutar I, Swanson L (2011) Time-resolved fluorescence anisotropy studies of the cononsolvency of poly(N-isopropyl acrylamide) in mixtures of methanol and water. Soft Matter 7(3):1176–1184. doi:10.1039/c0sm00836b

    Article  CAS  Google Scholar 

  48. Badea MG, Detoma RP, Brand L (1978) Nanosecond relaxation processes in liposomes. Biophys J 24(1):197–212

    Article  CAS  Google Scholar 

  49. Chattopadhyay A, Mukherjee S (1993) Fluorophore environments in membrane-bound probes—a red edge excitation shift study. Biochemistry 32(14):3804–3811. doi:10.1021/bi00065a037

    Article  CAS  Google Scholar 

  50. Hutterer R, Schneider FW, Lanig H, Hof M (1997) Solvent relaxation behaviour of n-anthroyloxy fatty acids in PC-vesicles and paraffin oil: a time-resolved emission spectra study. Biochim Biophys Acta Biomembr 1323(2):195–207. doi:10.1016/s0005-2736(96)00186-1

    Article  CAS  Google Scholar 

  51. Gafni A, Detoma RP, Manrow RE, Brand L (1977) Nanosecond decay studies of a fluorescence probe bound to apomyoglobin. Biophys J 17(2):155–168

    Article  CAS  Google Scholar 

  52. Toptygin D, Gronenborn AM, Brand L (2006) Nanosecond relaxation dynamics of protein GB1 identified by the time-dependent red shift in the fluorescence of tryptophan and 5-fluorotryptophan. J Phys Chem B 110(51):26292–26302. doi:10.1021/jp064528n

    Article  CAS  Google Scholar 

  53. Brauns EB, Madaras ML, Coleman RS, Murphy CJ, Berg MA (1999) Measurement of local DNA reorganization on the picosecond and nanosecond time scales. J Am Chem Soc 121(50):11644–11649. doi:10.1021/ja992456q

    Article  CAS  Google Scholar 

  54. Bagchi B, Jana B (2010) Solvation dynamics in dipolar liquids. Chem Soc Rev 39(6):1936–1954. doi:10.1039/b902048a

    Article  CAS  Google Scholar 

  55. Sachl R, Stepanek M, Prochazka K, Humpolickova J, Hof M (2008) Fluorescence study of the solvation of fluorescent probes prodan and laurdan in poly(epsilon-caprolactone)-block-poly(ethylene oxide) vesicles in aqueous solutions with tetrahydrofurane. Langmuir 24(1):288–295. doi:10.1021/la702277t

    Article  CAS  Google Scholar 

  56. Humpolickova J, Stepanek M, Prochazka K, Hof M (2005) Solvent relaxation study of pH-dependent hydration of poly(oxyethylene) shells in polystyrene-block-poly(2-vinylpyridine)-block-poly(oxyethylene) micelles in aqueous solutions. J Phys Chem A 109(48):10803–10812. doi:10.1021/jp053348v

    Article  CAS  Google Scholar 

  57. Matejicek P, Humpolickova J, Prochazka K, Tuzar Z, Spirkova M, Hof M, Webber SE (2003) Hybrid block copolymer micelles with partly hydrophobically modified polyelectrolyte shells in polar and aqueous media: experimental study using fluorescence correlation spectroscopy, time-resolved fluorescence, light scattering, and atomic force microscopy. J Phys Chem B 107(32):8232–8240. doi:10.1021/jp022221s

    Article  CAS  Google Scholar 

  58. Forster S, Wenz E, Lindner P (1996) Density profile of spherical polymer brushes. Phys Rev Lett 77(1):95–98. doi:10.1103/PhysRevLett.77.95

    Article  Google Scholar 

  59. Forster S, Zisenis M, Wenz E, Antonietti M (1996) Micellization of strongly segregated block copolymers. J Chem Phys 104(24):9956–9970

    Article  Google Scholar 

  60. Jurkiewicz P, Sykora J, Olzynska A, Humpolickova J, Hof M (2005) Solvent relaxation in phospholipid bilayers: principles and recent applications. J Fluoresc 15(6):883–894. doi:10.1007/s10895-005-0013-4

    Article  CAS  Google Scholar 

  61. Michl J, Thulstrup EW (1986) Spectroscopy with polarized light: solute alignment by photoselection, in liquid crystals, polymers, and membranes. VCH-Wiley, Deerfield Beach

    Google Scholar 

  62. Debye PJW (1945) Polar molecules. Dover, New York

    Google Scholar 

  63. Cross AJ, Fleming GR (1984) Analysis of time-resolved fluorescence anisotropy decays. Biophys J 46(1):45–56

    Article  CAS  Google Scholar 

  64. Favro LD (1960) Theory of the rotational Brownian motion of a free rigid body. Phys Rev 119(1):53–62. doi:10.1103/PhysRev.119.53

    Article  Google Scholar 

  65. Tao T (1969) Time-dependent fluorescence depolarization and Brownian rotational diffusion coefficients of macromolecules. Biopolymers 8(5):609–632. doi:10.1002/bip.1969.360080505

    Article  CAS  Google Scholar 

  66. Ehrenber M, Rigler R (1972) Polarized fluorescence and rotational Brownian motion. Chem Phys Lett 14(5):539–544. doi:10.1016/0009-2614(72)87202-6

    Article  Google Scholar 

  67. Kawski A (1993) Fluorescence anisotropy—theory and applications of rotational depolarization. Crit Rev Anal Chem 23(6):459–529. doi:10.1080/10408349308051654

    Article  CAS  Google Scholar 

  68. Boens N, Novikov E, Ameloot M (2006) Compartmental modeling of the fluorescence anisotropy decay of a cylindrically symmetric Brownian rotor: identifiability analysis. Chemphyschem 7(12):2559–2566. doi:10.1002/cphc.200600309

    Article  CAS  Google Scholar 

  69. Chuang TJ, Eisenthal KB (1972) Theory of fluorescence depolarization by anisotropic rotational diffusion. J Chem Phys 57(12):5094–5097. doi:10.1063/1.1678194

    Article  CAS  Google Scholar 

  70. Teraoka I (2002) Polymer solutions: an introduction to physical properties. Wiley, New York

    Book  Google Scholar 

  71. Rose ME (1995) Elementary theory of angular momentum. Courier Dover, New York

    Google Scholar 

  72. Belford GG, Belford RL, Weber G (1972) Dynamics of fluorescence polarization in macromolecules. Proc Natl Acad Sci USA 69(6):1392–1393. doi:10.1073/pnas.69.6.1392

    Article  CAS  Google Scholar 

  73. Limpouchova Z, Prochazka K, Fidler V, Dvorak J, Bednar B (1993) Molecular-movements and dynamics in solutions studied by fluorescence depolarization measurement. Collect Czech Chem Commun 58(2):213–233. doi:10.1135/cccc19930213

    Article  CAS  Google Scholar 

  74. Polimeno A, Saielli G, Nordio PL (1998) A diffusive model for interpreting solvation dynamics in isotropic and ordered liquid phases. Chem Phys 235(1–3):313–331. doi:10.1016/s0301-0104(98)00076-7

    Article  CAS  Google Scholar 

  75. Barkley MD, Kowalczyk AA, Brand L (1981) Fluorescence decay studies of anisotropic rotations of small molecules. J Chem Phys 75(7):3581–3593. doi:10.1063/1.442468

    Article  CAS  Google Scholar 

  76. Christensen RL, Drake RC, Phillips D (1986) Time-resolved fluorescence anisotropy of perylene. J Phys Chem 90(22):5960–5967. doi:10.1021/j100280a100

    Article  CAS  Google Scholar 

  77. Gordon RG (1966) On rotational diffusion of molecules. J Chem Phys 44(5):1830–1836. doi:10.1063/1.1726949

    Article  CAS  Google Scholar 

  78. McClung RED (1969) Rotational diffusion of spherical-top molecules in liquids. J Chem Phys 51(9):3842–3852. doi:10.1063/1.1672600

    Article  CAS  Google Scholar 

  79. McClung RED (1972) Rotational diffusion of symmetric top molecules in liquids. J Chem Phys 57(12):5478–5491. doi:10.1063/1.1678249

    Article  CAS  Google Scholar 

  80. St. Pierre AG, Steele WA (1972) Collisional effects upon rotational correlations of symmetric top molecules. J Chem Phys 57(11):4638–4648

    Article  CAS  Google Scholar 

  81. Leicknam JC, Guissani Y (1981) On extended diffusion-models for asymmetric-top molecules in liquids. Mol Phys 42(5):1105–1120. doi:10.1080/00268978100100841

    Article  CAS  Google Scholar 

  82. Fixman M, Rider K (1969) Angular relaxation of symmetrical top. J Chem Phys 51(6):2425–2438. doi:10.1063/1.1672362

    Article  CAS  Google Scholar 

  83. McClung RED (1980) The Fokker-Planck-Langevin model for rotational Brownian-motion. 1. General-theory. J Chem Phys 73(5):2435–2442. doi:10.1063/1.440394

    Article  CAS  Google Scholar 

  84. McClung RED (1981) The Fokker-Planck-Langevin model for rotational Brownian-motion. 3. Symmetric top molecules. J Chem Phys 75(11):5503–5513. doi:10.1063/1.441954

    Article  CAS  Google Scholar 

  85. Levi G, Marsault JP, Marsaultherail F, McClung RED (1980) The Fokker-Planck-Langevin model for rotational Brownian-motion. 2. Comparison with the extended rotational diffusion-model and with observed infrared and Raman band shapes of linear and spherical molecules in fluids. J Chem Phys 73(5):2443–2453

    Article  CAS  Google Scholar 

  86. Lascombe J, Besnard M, Maraval P (1982) A new extended diffusion-model for rotational motion of symmetric-top molecules in the liquid-phase. Chem Phys 72(1–2):177–184. doi:10.1016/0301-0104(82)87078-x

    Article  CAS  Google Scholar 

  87. Ghiggino K, Tan K, Phillips D (1985) Polymer photophysics. Chapman and Hall, London

    Google Scholar 

  88. Yip J, Duhamel J, Qiu XP, Winnik FM (2011) Long-range polymer chain dynamics of pyrene-labeled poly(N-isopropylacrylamide)s studied by fluorescence. Macromolecules 44(13):5363–5372. doi:10.1021/ma2007865

    Article  CAS  Google Scholar 

  89. Monnerie L (1991) Segmental dynamics of polymer melts. J Non Cryst Solids 131:755–765. doi:10.1016/0022-3093(91)90678-y

    Article  Google Scholar 

  90. Uhlik F, Kosovan P, Limpouchova Z, Prochazka K, Borisov OV, Leermakers FAM (2014) Modeling of ionization and conformations of starlike weak polyelectrolytes. Macromolecules 47(12):4004–4016. doi:10.1021/ma500377y

    Article  CAS  Google Scholar 

  91. Kosovan P, Limpouchova Z, Prochazka K (2006) Molecular dynamics simulation of time-resolved fluorescence anisotropy decays from labeled polyelectrolyte chains. Macromolecules 39(9):3458–3465. doi:10.1021/ma052557a

    Article  CAS  Google Scholar 

  92. Kiserow D, Prochazka K, Ramireddy C, Tuzar Z, Munk P, Webber SE (1992) Fluorometric and quasi-elastic light-scattering study of the solubilization of nonpolar low-molar mass compounds into water-soluble block-copolymer micelles. Macromolecules 25(1):461–469. doi:10.1021/ma00027a072

    Article  CAS  Google Scholar 

  93. Nagl S, Schaeferling M, Wolfbeis OS (2005) Fluorescence analysis in microarray technology. Microchim Acta 151(1–2):1–21. doi:10.1007/s00604-005-0393-9

    Article  CAS  Google Scholar 

  94. Duhamel J (2014) Global analysis of fluorescence decays to probe the internal dynamics of fluorescently labeled macromolecules. Langmuir 30(9):2307–2324. doi:10.1021/la403714u

    Article  CAS  Google Scholar 

  95. Duhamel J (2012) New insights in the study of pyrene excimer fluorescence to characterize macromolecules and their supramolecular assemblies in solution. Langmuir 28(16):6527–6538. doi:10.1021/la2047646

    Article  CAS  Google Scholar 

  96. Ercole F, Davis TP, Evans RA (2010) Photo-responsive systems and biomaterials: photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond. Polym Chem 1(1):37–54. doi:10.1039/b9py00300b

    Article  CAS  Google Scholar 

  97. Valeur B, Rempp P, Monnerie L (1974) Insertion of anthracene fluorophore in polystyrene chain—study of local movements via inhibition and fluorescence polarization. C R Hebd Seances Acad Sci Ser C 279(25):1009–1012

    CAS  Google Scholar 

  98. Valeur B, Monnerie L (1976) Dynamics of macromolecular chains. 3. Time-dependent fluorescence polarization studies of local motions of polystyrene in solution. J Polym Sci Part B Polym Phys 14(1):11–27. doi:10.1002/pol.1976.180140102

    Article  CAS  Google Scholar 

  99. Viovy JL, Frank CW, Monnerie L (1985) Fluorescence anisotropy decay studies of local polymer dynamics in the melt. 2. Labeled model compounds of variable chain-length. Macromolecules 18(12):2606–2613. doi:10.1021/ma00154a042

    Article  CAS  Google Scholar 

  100. Valeur B, Jarry JP, Geny F (1975) Dynamics of macromolecular chains. 1. Theory of motions on a tetrahedral lattice. J Polym Sci Part B Polym Phys 13(4):667–674. doi:10.1002/pol.1975.180130401

    Article  Google Scholar 

  101. Valeur B, Monnerie L, Jarry JP (1975) Dynamics of macromolecular chains. 2. Orientation relaxation generated by elementary 3-bond motions and notion of an independent kinetic segment. J Polym Sci Part B Polym Phys 13(4):675–682. doi:10.1002/pol.1975.180130402

    Article  Google Scholar 

  102. Ediger MD (1991) Time-resolved optical studies of local polymer dynamics. Annu Rev Phys Chem 42:225–250. doi:10.1146/annurev.physchem.42.1.225

    Article  CAS  Google Scholar 

  103. Waldow DA, Ediger MD, Yamaguchi Y, Matsushita Y, Noda I (1991) Viscosity dependence of the local segmental dynamics of anthracene-labeled polystyrene in dilute-solution. Macromolecules 24(11):3147–3153. doi:10.1021/ma00011a018

    Article  CAS  Google Scholar 

  104. Adolf DB, Ediger MD, Kitano T, Ito K (1992) Viscosity dependence of the local segmental dynamics of anthracene-labeled polyisoprene in dilute-solution. Macromolecules 25(2):867–872. doi:10.1021/ma00028a055

    Article  CAS  Google Scholar 

  105. Hall CK, Helfand E (1982) Conformational state relaxation in polymers—time-correlation functions. J Chem Phys 77(6):3275–3282. doi:10.1063/1.444204

    Article  CAS  Google Scholar 

  106. Viovy JL, Monnerie L, Brochon JC (1983) Fluorescence polarization decay study of polymer dynamics—a critical discussion of models using synchrotron data. Macromolecules 16(12):1845–1852. doi:10.1021/ma00246a009

    Article  CAS  Google Scholar 

  107. Gottlieb YY, Wahl P (1963) Etude theorique de la polarisation de fluorescence des macromolecules portant un groupe emetteur mobile autour dun axe de rotation. J Chim Phys Phys Chim Biol 60(7–8):849–856

    Google Scholar 

  108. Burghardt TP (1983) Fluorescence depolarization by anisotropic rotational diffusion of a luminophore and its carrier molecule. J Chem Phys 78(10):5913–5919. doi:10.1063/1.444596

    Article  CAS  Google Scholar 

  109. Tanaka F, Mataga N (1987) Fluorescence quenching dynamics of tryptophan in proteins—effect of internal-rotation under potential barrier. Biophys J 51(3):487–495

    Article  CAS  Google Scholar 

  110. Takano T, Dickerson RE (1981) Conformation change of cytochrome-C. 1. Ferrocytochrome-C structure refined at 1.5 A resolution. J Mol Biol 153(1):79–94. doi:10.1016/0022-2836(81)90528-3

    Article  CAS  Google Scholar 

  111. Weber G (1989) Perrin revisited—parametric theory of the motional depolarization of fluorescence. J Phys Chem 93(16):6069–6073. doi:10.1021/j100353a026

    Article  CAS  Google Scholar 

  112. Szabo A (1984) Theory of fluorescence depolarization in macromolecules and membranes. J Chem Phys 81(1):150–167. doi:10.1063/1.447378

    Article  CAS  Google Scholar 

  113. Munishkina LA, Fink AL (2007) Fluorescence as a method to reveal structures and membrane-interactions of amyloidogenic proteins. Biochim Biophys Acta Biomembr 1768(8):1862–1885. doi:10.1016/j.bbamem.2007.03.015

    Article  CAS  Google Scholar 

  114. Lentz BR (1993) Use of fluorescent-probes to monitor molecular order and motions within liposome bilayers. Chem Phys Lipids 64(1–3):99–116. doi:10.1016/0009-3084(93)90060-g

    Article  CAS  Google Scholar 

  115. Kinosita K, Kawato S, Ikegami A (1977) Theory of fluorescence polarization decay in membranes. Biophys J 20(3):289–305

    Article  CAS  Google Scholar 

  116. Kinosita K, Ikegami A, Kawato S (1982) On the wobbling-in-cone analysis of fluorescence anisotropy decay. Biophys J 37(2):461–464

    Article  CAS  Google Scholar 

  117. Lipari G, Szabo A (1980) Effect of librational motion on fluorescence depolarization and nuclear magnetic-resonance relaxation in macromolecules and membranes. Biophys J 30(3):489–506

    Article  CAS  Google Scholar 

  118. Procházka K, Limpouchová Z, Webber SE, Munk P (1994) Time-resolved fluorescence anisotropy measurements on fluorescently tagged amphiphilic micelles. J Fluoresc 4(4):353–356. doi:10.1007/BF01881455

    Article  Google Scholar 

  119. Birks JB, Munro IH, Dyson DJ (1963) Excimer fluorescence. 2. Lifetime studies of pyrene solutions. Proc R Soc Lond Ser A Math Phys Sci 275(1360):575–588. doi:10.1098/rspa.1963.0187

    Article  CAS  Google Scholar 

  120. Gould IR, Young RH, Mueller LJ, Farid S (1994) Mechanisms of exciplex formation—roles of superexchange, solvent polarity, and driving-force for electron-transfer. J Am Chem Soc 116(18):8176–8187. doi:10.1021/ja00097a027

    Article  CAS  Google Scholar 

  121. Beens H, Weller A (1975) Excited molecular π-complexes in solution. In: Birks JB (ed) Organic molecular photophysics, vol 2. Wiley, New York, pp 159–215

    Google Scholar 

  122. Gould IR, Young RH, Farid S (1991) Dynamics of photoinduced electron transfer in solution. In: Honda K (ed) Photochemical processes in organized molecular systems. Elsevier, New York

    Google Scholar 

  123. Stepanek M, Podhajecka K, Prochazka K, Teng Y, Webber SE (1999) Fluorometric and ultraviolet–visible absorption study of poly(methacrylic acid) shells of high-molar-mass block copolymer micelles. Langmuir 15(12):4185–4193. doi:10.1021/la981129d

    Article  CAS  Google Scholar 

  124. Kasha M, Rawls HR, El-Bayoumi MA (1965) The exciton model in molecular spectroscopy. Pure Appl Chem 11(3–4):371–392

    CAS  Google Scholar 

  125. Kasha M (1976) Multiple excitation in composite molecules. In: Di Bartolo B, Pacheco D, Goldberg V (eds) Spectroscopy of the excited state, vol 12. NATO advanced study institutes series. Springer, Berlin, pp 368–368. doi:10.1007/978-1-4684-2793-6_16

    Google Scholar 

  126. McRae EG, Kasha M (1964) The molecular exciton model. In: Augenstein L, Mason R, Rosenberg B (eds) Physical processes in radiation biology. Academic, New York, pp 23–42

    Chapter  Google Scholar 

  127. Frenkel JA (1931) On the transformation of light into heat in solids. II. Phys Rev 37(10):1276

    Article  Google Scholar 

  128. Jelley EE (1936) Spectral absorption and fluorescence of dyes in the molecular state. Nature 138(3502):1009–1010

    Article  CAS  Google Scholar 

  129. Ribo JM, Bofill JM, Crusats J, Rubires R (2001) Point-dipole approximation of the exciton coupling model versus type of bonding and of excitons in porphyrin supramolecular structures. Chemistry 7(13):2733–2737. doi:10.1002/1521-3765(20010702)7:13<2733::aid-chem2733>3.0.co;2-q

    Article  CAS  Google Scholar 

  130. del Monte F, Mackenzie JD, Levy D (2000) Rhodamine fluorescent dimers adsorbed on the porous surface of silica gels. Langmuir 16(19):7377–7382. doi:10.1021/la000540+

    Article  CAS  Google Scholar 

  131. Chaudhuri R, Arbeloa FL, Arbeloa IL (2000) Spectroscopic characterization of the adsorption of rhodamine 3B in hectorite. Langmuir 16(3):1285–1291. doi:10.1021/la990772c

    Article  CAS  Google Scholar 

  132. Parr RG (1964) Quantum theory of molecular electronic structure. Benjamin, New York

    Google Scholar 

  133. Murrell JN (1971) The theory of the electronic spectra of organic molecules. Chapman and Hall, London

    Google Scholar 

  134. Chambers RW, Kajiwara T, Kearns DR (1974) Effect of dimer formation of electronic absorption and emission-spectra of ionic dyes—rhodamines and other common dyes. J Phys Chem 78(4):380–387. doi:10.1021/j100597a012

    Article  CAS  Google Scholar 

  135. Fujii T, Nishikiori H, Tamura T (1995) Absorption-spectra of rhodamine-b dimers in dip-coated thin-films prepared by the sol-gel method. Chem Phys Lett 233(4):424–429. doi:10.1016/0009-2614(94)01477-d

    Article  CAS  Google Scholar 

  136. Vergeldt FJ, Koehorst RBM, Vanhoek A, Schaafsma TJ (1995) Intramolecular interactions in the ground and excited-state of tetrakis(n-methylpyridyl)porphyrins. J Phys Chem 99(13):4397–4405. doi:10.1021/j100013a007

    Article  CAS  Google Scholar 

  137. Gouterman M (1961) Spectra of porphyrins. J Mol Spectrosc 6(1):138–163. doi:10.1016/0022-2852(61)90236-3

    Article  CAS  Google Scholar 

  138. Gouterman M, Snyder LC, Wagniere GH (1963) Spectra of porphyrins. 2. 4 orbital model. J Mol Spectrosc 11(2):108–127. doi:10.1016/0022-2852(63)90011-0

    Article  CAS  Google Scholar 

  139. Ribo JM, Rubires R, El-Hachemi Z, Farrera JA, Campos L, Pakhomov GL, Vendrell M (2000) Self-assembly to ordered films of the homoassociate solutions of the tetrasodium salt of 5,10,15,20-tetrakis(4-sulfonatophenyl) porphyrin dihydrochloride. Mater Sci Eng C Biomim Supramol Syst 11(2):107–115. doi:10.1016/s0928-4931(00)00147-8

    Article  Google Scholar 

  140. Aratani N, Osuka A, Kim YH, Jeong DH, Kim D (2000) Extremely long, discrete meso–meso-coupled porphyrin arrays. Angew Chem Int Ed 39(8):1458–1462. doi:10.1002/(sici)1521-3773(20000417)39:8<1458::aid-anie1458>3.0.co;2-e

    Article  CAS  Google Scholar 

  141. Kim YH, Jeong DH, Kim D, Jeoung SC, Cho HS, Kim SK, Aratani N, Osuka A (2001) Photophysical properties of long rod like meso–meso-linked zinc(II) porphyrins investigated by time-resolved laser spectroscopic methods. J Am Chem Soc 123(1):76–86. doi:10.1021/ja0009976

    Article  CAS  Google Scholar 

  142. Osuka A, Maruyama K (1988) Synthesis of naphthalene-bridged porphyrin dimers and their orientation-dependent exciton coupling. J Am Chem Soc 110(13):4454–4456. doi:10.1021/ja00221a079

    Article  CAS  Google Scholar 

  143. Prochazkova K, Zelinger Z, Lang K, Kubat P (2004) meso-Tetratolylporphyrins substituted by pyridinium groups: aggregation, photophysical properties and complexation with DNA. J Phys Org Chem 17(10):890–897. doi:10.1002/poc.783

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Czech Science Foundation (Grants P106-13-02938S and P106-12-0143). The authors would like to thank to Lucie Suchá and Karel Šindelka for help with graphics.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zuzana Limpouchová or Karel Procházka .

Editor information

Editors and Affiliations

Appendix: Simple Quantum Mechanics Explanation of Nondegenerate Transitions Between Energy Levels in “J” and “H” Dimers

Appendix: Simple Quantum Mechanics Explanation of Nondegenerate Transitions Between Energy Levels in “J” and “H” Dimers

The ground-state wave function of a dimer composed of molecules A and B, Ψ G = Φ = ψ A ψ B, is a totally symmetrical product with respect to all the symmetry operations of the dimer AB. The first excited state can be described by two equivalent wave functions, Φ 1 = ψ A ψ B *·and·Φ 2 = ψ A * ψ B. Their energies are degenerate. The delocalized stationary states corresponding to the “exciton,” i.e., to the state in which the excited electron is not localized in any of them, are described by a symmetrical and antisymmetrical combination of the two above functions:

$$ {\varPsi}_{+}=\left(1/\surd 2\right) \left({\varPhi}_1+{\varPhi}_2\right)=\left(1/\surd 2\right) \left({\psi}_{\mathrm{A}}{\psi}_{\mathrm{B}}^{*}+{\psi}_{\mathrm{A}}^{*}{\psi}_{\mathrm{B}}\right) $$
(43)
$$ {\varPsi}_{-}=\left(1/\surd 2\right) \left({\varPhi}_1-{\varPhi}_2\right)=\left(1/\surd 2\right) \left({\psi}_{\mathrm{A}}{\psi}_{\mathrm{B}}^{*}-{\psi}_{\mathrm{A}}^{*}{\psi}_{\mathrm{B}}\right) $$
(44)

The node of the wave function does not correspond to a change in the sign of the wave function, but to a change in the orientation of the dipole moment. The energies of states Ψ + and Ψ are E ± = ΔE ± E′, where ΔE is the energy difference between the excited and ground states of the monomer and E′ is the perturbation (energy splitting) due to interaction of the excited and ground-state dipoles. The value + E′ corresponds to Ψ + and similarly for –E′. This value can be calculated using the perturbation Hamiltonian and the wave functions of the unperturbed degenerate states Φ 1 and Φ 2. The perturbation Hamiltonian can be expressed as the classic expression for the energy of interacting dipoles. If we take into account only the changes in the dipoles in one dimension (which is the case for most fluorophore dimers), we can write

$$ {H}_{\mathrm{pert}}=\frac{e^2}{4\pi {\varepsilon}_0{r}^3}{\displaystyle \sum_{ij}{x}_{\mathrm{A}}^i{x}_{\mathrm{B}}^j} $$
(45)

where e is the elementary charge, ε 0 is the dielectric permittivity of vacuum, and x i describes the positions of the electrons in molecule A (x j in molecule B).

After insertion in (45), we get

$$ {E}^{\prime }={\displaystyle \iint {\varPhi}_1{\widehat{H}}_{\mathrm{pert}}{\varPhi}_2d{\tau}_{\mathrm{A}}d{\tau}_{\mathrm{B}}}=\frac{e^2}{4\pi {\varepsilon}_0{r}_{\mathrm{A}\mathrm{B}}^3}{\displaystyle \iint {\psi}_{\mathrm{A}}{\psi}_{\mathrm{B}}^{\ast }}{\displaystyle \sum_{\mathrm{ij}}{x}_{\mathrm{A}}^i{x}_{\mathrm{B}}^j}{\psi}_{\mathrm{A}}^{\ast }{\psi}_{\mathrm{B}}d{\tau}_{\mathrm{A}}d{\tau}_{\mathrm{B}} $$
(46)

Because x i describes the positions in A only and x j in B only, expression (44) can be rewritten

$$ {E}^{\prime }=\frac{1}{4\pi {\varepsilon}_0{r}_{\mathrm{A}\mathrm{B}}^3}\left[{\displaystyle \int {\psi}_{\mathrm{A}}{\displaystyle \sum e{x}_{\mathrm{A}}^i{\psi}_{\mathrm{A}}^{\ast }d{\tau}_{\mathrm{A}}}}\right]\left[{\displaystyle \int {\psi}_{\mathrm{B}}{\displaystyle \sum e{x}_{\mathrm{B}}^j{\psi}_{\mathrm{B}}^{\ast }d{\tau}_{\mathrm{B}}}}\right]=\frac{1}{4\pi {\varepsilon}_0{r}_{\mathrm{A}\mathrm{B}}^3}{\overrightarrow{\mu}}_{\mathrm{A}} {\overrightarrow{\mu}}_{\mathrm{B}} $$
(47)

where \( {\overrightarrow{\mu}}_{\mathrm{A}} \) and \( {\overrightarrow{\mu}}_{\mathrm{B}} \) are the transition moments of the individual molecules. The transition moments of the dimer are

$$ {\overrightarrow{\mu}}_{+}={\displaystyle \int \int {\varPsi}_{\mathrm{G}}}\left({\overrightarrow{\mu}}_{\mathrm{A}}+{\overrightarrow{\mu}}_{\mathrm{B}}\right){\varPsi}_{+}d{\tau}_{\mathrm{A}}d{\tau}_{\mathrm{B}} $$
(48)
$$ {\overrightarrow{\mu}}_{-}={\displaystyle \int \int {\varPsi}_{\mathrm{G}}}\left({\overrightarrow{\mu}}_{\mathrm{A}}+{\overrightarrow{\mu}}_{\mathrm{B}}\right){\varPsi}_{-}d{\tau}_{\mathrm{A}}d{\tau}_{\mathrm{B}} $$
(49)

After the insertion of the expressions for the wave functions and application of the orthogonality properties of the wave functions of different states of the same molecule, we get

$$ {\overrightarrow{\mu}}_{+}=\left({\scriptscriptstyle \frac{1}{\sqrt{2}}}\right)\left({\overrightarrow{\mu}}_{\mathrm{A}}+{\overrightarrow{\mu}}_{\mathrm{B}}\right) $$
(50)
$$ {\overrightarrow{\mu}}_{-}=\left({\scriptscriptstyle \frac{1}{\sqrt{2}}}\right)\left({\overrightarrow{\mu}}_{\mathrm{A}}-{\overrightarrow{\mu}}_{\mathrm{B}}\right) $$
(51)

The above-outlined simple theoretical description provides a clue to deciding which transition is allowed and which is forbidden. For a coplanar arrangement of two aromatic rings with both dipole moments oriented in the same direction, energy contribution E´ is positive, Eq. (47). State Ψ + has higher energy than Ψ and also than the excited state of the monomer. The transition moment for transition Ψ G → Ψ + is \( {\overrightarrow{\mu}}_{+}=\left({\scriptscriptstyle \frac{1}{\sqrt{2}}}\right)\left(2{\overrightarrow{\mu}}_{\mathrm{A}}\right)\ne 0 \) and this transition is allowed. Transition Ψ G → Ψ is forbidden because \( {\overrightarrow{\mu}}_{-}=0 \). If the dipole moments are antiparallel, E´ is negative. This means that Ψ + has lower energy and that transition Ψ G → Ψ + is forbidden because the two contributions to the final dipole moment cancel each other. It follows that the absorption spectra are identical in the two cases. Using analogous qualitative analysis for the orientation of aromatic rings in one plane, we can find that, for the “head-to-tail” as well as the “head-to-head” orientation of the dipole moments, the allowed transition will be the excitation to the lower excited state. The energy of the lower state will be the same in both cases and the dimers will be strongly fluorescent species.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Limpouchová, Z., Procházka, K. (2016). Theoretical Principles of Fluorescence Spectroscopy. In: Procházka, K. (eds) Fluorescence Studies of Polymer Containing Systems. Springer Series on Fluorescence, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-26788-3_4

Download citation

Publish with us

Policies and ethics