Skip to main content
Log in

Study of non-covalent interactions of luotonin A derivatives and the DNA minor groove as a first step in the study of their analytical potential as DNA probes

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The interaction between DNA and several newly synthesized derivatives of the natural anticancer compound luotonin A has been studied. The results from our work reveal an effective and selective alkaloid/double-stranded DNA (ds-DNA) interaction. In the presence of increasing amounts of ds-DNA, a noticeable fluorescence quenching of the luotonin A derivatives under study was observed. However, this effect did not take place when single-stranded DNA (ss-DNA) was employed. The association constant alkaloids/ds-DNA was calculated by quantitation of such a quenching effect. The influence of other quenchers, namely Co2+ and Br on the native fluorescence of luotonin A and derivatives was also studied, and a remarkable quenching effect was observed for both ions. We have also investigated how by binding DNA the alkaloids could get protected from the external Co2+ and Br quenchers. The Stern–Volmer constants (K SV) for Co2+ and Br quenching effect on the studied alkaloids were considerably reduced (10–50%) after incubation of the compounds in the presence of DNA with regard to the K SV values in absence of DNA. An increase in the fluorescence anisotropy values of luotonins was also produced only in the presence of ds-DNA but not in the case of ss-DNA. To better characterize the nature of that interaction, viscosimetry assays and ethidium bromide displacement studies were conducted. With regard to DNA reference solutions, the viscosity of solutions containing DNA and luotonin A derivatives was reduced or not significantly increased. It was also observed that the studied compounds were unable to displace the intercalating agent ethidium bromide. All of these results, together with the obtained association constants values (K ass = 2.2 × 102 – 1.3 × 103), support that neither covalent nor intercalating interactions luotonin A derivatives/ds-DNA are produced, leading to the conclusion that these alkaloids bind ds-DNA through the minor groove. The specific changes in the fluorescence behavior of luotonin A and derivatives distinguishing between ss-DNA and ds-DNA binding, lead us to propose these compounds as attractive turn-off probes to detect DNA hybridization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ctDNA:

Calf thymus DNA

ds-DNA:

Double-stranded DNA

K ass :

Association constant

K sv :

Stern–Volmer constant

ss-DNA:

Single-stranded DNA

References

  1. Giannetti C, Citti L, Domenici C, Tedeschi L, Baldini F, Wabuyele MB, Vo.Dinh T (2006) Sens Actuators B 113:649–654

    Article  Google Scholar 

  2. Rodriguez-Mozaz S, Reder S, de Alda Lopez M, Gauglitz G, Barcelo D (2004) Biosens Bioelectron 19:633–640

    Article  CAS  Google Scholar 

  3. Rowe-Taitt CA, Golden JP, Feldstein MJ, Crass JJ, Hoffman KE, Ligler FS (2000) Biosens Bioelectron 14:785–794

    Article  CAS  Google Scholar 

  4. Nagl S, Schäferling M, Wolfbeis OS (2005) Microchim Acta 151:1–21

    Article  CAS  Google Scholar 

  5. Schäferling M, Nagl S (2006) Anal Bioanal Chem 385:500–517

    Article  Google Scholar 

  6. Schultz E, Galland R, Bouuëtiez Du, Flashaut T, Planat-Chrétien A, Lesbre F, Hoang A, Volland, Perraut F (2008) Biosens Bioelectron 23:987–994

    Article  CAS  Google Scholar 

  7. Lehr HP, Reimann M, Brandenburg a, Sulz G, Klapproth H (2003) Anal Chem 75:2414–2420

    Article  CAS  Google Scholar 

  8. Hanafi-Bagby D, Piunno PAE, Wust CC, Krull UJ (2000) Anal Chim Acta 411:19–30

    Article  CAS  Google Scholar 

  9. Bai L-P, Cai Z, Zhao ZZ, Nakatani K, Jiang Z-H (2008) Anal Bioanal Chem 392:709–716

    Article  CAS  Google Scholar 

  10. Song G-W, Cai Z-X, He Y, Lou Z-W (2004) Sensors and Actuators B 102:320–324

    Article  Google Scholar 

  11. Leung A, Shankar PM, Mutharasan R (2007) Sens Actuators B 125:688–703

    Article  Google Scholar 

  12. Ma Z, Hano Y, Nomura T (2005) Heterocycles 65:2203–2219

    Article  CAS  Google Scholar 

  13. Ma Z, Hano Y, Nomura T (2004) Bioorg Med Chem Lett 14:1193–1196

    Article  CAS  Google Scholar 

  14. Cagir A, Eisenhauer BM, Gao R, Thomas SJ, Hecht SM (2004) Bioorg Med Chem 12:6287–6299

    Article  CAS  Google Scholar 

  15. Avendaño C, Menéndez JC (2008) Medicinal chemistry of anticancer drugs. Elsevier, Amsterdam

    Google Scholar 

  16. Hsiang Y-H, Lihou MG, Liu LF (1989) Cancer Res 49:5077–5082

    CAS  Google Scholar 

  17. Cagir A, Jones SH, Gao R, Eisenhauer BM, Hecht SM (2003) J Am Chem Soc 125:13628–13629

    Article  CAS  Google Scholar 

  18. Aaron JJ, Trajkovska S (2006) Curr Drug Targets 7:1067–1081

    Article  CAS  Google Scholar 

  19. González-Ruiz V, Mussardo P, Corda E, Girotti S, Olives AI, Martín MA (2010) J Sep Sci 33:2086–2093

    Article  Google Scholar 

  20. Nakatani K, Matsuno T, Adachi K, Hagihara S, Saito I (2001) J Am Chem Soc 123:5695–5702

    Article  CAS  Google Scholar 

  21. Ihmels H, Faulhaber K, Vedaldi, Dall’Aqua F, Viola G (2005) Photochem Photobiol 81:1107–1115

    Article  CAS  Google Scholar 

  22. Sridharan V, Ribelles P, Ramos MT, Menéndez JC (2009) J Org Chem 74:5715–5718

    Article  CAS  Google Scholar 

  23. Kumar CV, Turner RS, Asuncion EH (1993) Photochem Photobiol A 74:231–238

    Article  CAS  Google Scholar 

  24. Li JF, Dong C (2009) Spectrochim Acta A 71:1938–1943

    Article  CAS  Google Scholar 

  25. Feng XZ, Lin Z, Yang LJ, Wang C, Bai CL (1998) Talanta 47:1223–1229

    Article  CAS  Google Scholar 

  26. Wang F, Huang W, Su L, Dong Z, Zhang S (2009) J Mol Struc 927:1–6

    Article  CAS  Google Scholar 

  27. Rabindranath B, Bijaya KS, Kalyan SG, Swagata D (2008) Int J Biol Macromol 42:14–21

    Article  Google Scholar 

  28. Waring M (2006) Sequence-specific DNA binding agents. RSC, Cambridge, pp 71–75

    Book  Google Scholar 

  29. Ling X, Zhong W, Huang Q, Ni K (2008) J Photochem Photobiol B 93:172–176

    Article  CAS  Google Scholar 

  30. Gopal M, Veeranna S (2005) J Photochem Photobiol B 81:181–189

    Article  CAS  Google Scholar 

  31. Joseph J, Kuruvilla E, Achuthan AT, Ramaiah D, Schuster GB (2004) Bioconj Chem 15:1230–1235

    Article  CAS  Google Scholar 

  32. Posokhov Y, Biner H, Içli S (2003) J Photochem Photobiol A 158:13–20

    Article  CAS  Google Scholar 

  33. Fei Y, Lu G, Fan G, Wu Y (2009) Anal Sci 25:1333–1338

    Article  CAS  Google Scholar 

  34. Valeur B (2001) Molecular fluorescence: principles and applications. Wiley VCH, Weinheim

    Google Scholar 

  35. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer Science + Business Media, New York

    Book  Google Scholar 

Download references

Acknowledgments

Financial support from Ministerio de Ciencia e Innovación (SPAIN) through grant CTQ2009-11312 as well as from Grupos de investigación UCM 920234 is gratefully acknowledged. The authors are grateful to Ministerio de Educación for an FPU research fellowship for V. González-Ruiz and Sócrates-Erasmus Program (UE) funds for P. Mussardo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Antonia Martín.

Additional information

Published in the special issue Analytical and Bioanalytical Luminescence with Guest Editor Petr Solich.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 128 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mussardo, P., Corda, E., González-Ruiz, V. et al. Study of non-covalent interactions of luotonin A derivatives and the DNA minor groove as a first step in the study of their analytical potential as DNA probes. Anal Bioanal Chem 400, 321–327 (2011). https://doi.org/10.1007/s00216-010-4640-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4640-5

Keywords

Navigation