Skip to main content

Advertisement

Log in

Coumarin—Synthetic Methodologies, Pharmacology, and Application as Natural Fluorophore

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Coumarins are secondary metabolites made up of benzene and α-pyrone rings fused together that can potentially treat various ailments, including cancer, metabolic, and degenerative disorders. Coumarins are a diverse category of both naturally occurring as well as synthesized compounds with numerous biological and therapeutic properties. Coumarins as fluorophores play a key role in fluorescent labeling of biomolecules, metal ion detection, microenvironment polarity detection, and pH detection. This review provides a detailed insight into the characteristics of coumarins as well as their biosynthesis in plants and metabolic pathways. Various synthetic strategies for coumarin core involving both conventional and green methods have been discussed comparing advantages and disadvantages of each method. Conventional methods discussed are Pechmann, Knoevenagel, Perkin, Wittig, Kostanecki, Buchwald-Hartwig, and metal-induced coupling reactions such as Heck and Suzuki, as well as green approaches involving microwave or ultrasound energy. Various pharmacological applications of coumarin derivatives are discussed in detail. The structural features and conditions responsible for influencing the fluorescence of coumarin core are also elaborated.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Scheme 2
Fig. 5
Fig. 6
Fig. 7

Adopted from reference [2]

Fig. 8

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Cao D, Liu Z, Verwilst P, Koo S, Jangjili P, Kim JS et al (2019) Coumarin-based small-molecule fluorescent chemosensors. Chem Rev 119(18):10403–10519

    Article  CAS  PubMed  Google Scholar 

  2. António P, Sérgio M, Ana Teresa C (2019) Coumarins as Fluorescent Labels of Biomolecules. In: Venketeshwer R, Dennis M, Leticia R (eds) Phytochemicals in human health. IntechOpen, Rijeka

    Google Scholar 

  3. Venugopala KN, Rashmi V, Odhav B (2013) Review on natural coumarin lead compounds for their pharmacological activity. BioMed Res Int. https://doi.org/10.1155/2013/963248

    Article  PubMed  PubMed Central  Google Scholar 

  4. Petruľová-Poracká V, Repčák M, Vilková M, Imrich J (2013) Coumarins of Matricaria chamomilla L.: Aglycones and glycosides. Food Chem 141(1):54–59

    Article  PubMed  Google Scholar 

  5. Yang Z, Kinoshita T, Tanida A, Sayama H, Morita A, Watanabe N (2009) Analysis of coumarin and its glycosidically bound precursor in Japanese green tea having sweet-herbaceous odour. Food Chem 114(1):289–294

    Article  CAS  Google Scholar 

  6. Aslam K, Khosa MK, Jahan N, Nosheen S (2010) Short communication: synthesis and applications of Coumarin. Pak J Pharm Sci 23(4):449–454

    CAS  Google Scholar 

  7. Lake B (1999) Coumarin metabolism, toxicity and carcinogenicity: relevance for human risk assessment. Food Chem Toxicol 37(4):423–453

    Article  CAS  PubMed  Google Scholar 

  8. De Jager LS, Perfetti GA, Diachenko GW (2007) Determination of coumarin, vanillin, and ethyl vanillin in vanilla extract products: liquid chromatography mass spectrometry method development and validation studies. J Chromatogr A 1145(1–2):83–88

    Article  PubMed  Google Scholar 

  9. Jain PK, Joshi H (2012) Coumarin: chemical and pharmacological profile. J Appl Pharm Sci 2(6):236–240. https://doi.org/10.7324/JAPS.2012.2643

    Article  CAS  Google Scholar 

  10. Pal D, Saha S (2020) Coumarins: an important phytochemical with therapeutic potential. In: Swamy MK (ed) Plant-derived bioactives: chemistry and mode of action. Springer Singapore, Singapore, pp 205–222

    Chapter  Google Scholar 

  11. Küpeli Akkol E, Genç Y, Karpuz B, Sobarzo-Sánchez E, Capasso R (2020) Coumarins and coumarin-related compounds in pharmacotherapy of cancer. Cancers 12(7):1959

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ahmed S, Khan H, Aschner M, Mirzae H, Küpeli Akkol E, Capasso R (2020) Anticancer potential of furanocoumarins: mechanistic and therapeutic aspects. Int J Mol Sci 21(16):5622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ahmad J, Shamsuddin K, Zaman A (1984) A pyranocoumarin from Atalantia ceylanica. Phytochemistry 23(9):2098–2099

    Article  CAS  Google Scholar 

  14. Zulhendri F, Chandrasekaran K, Kowacz M, Ravalia M, Kripal K, Fearnley J et al (2021) Antiviral, antibacterial, antifungal, and antiparasitic properties of propolis: A review. Foods 10(6):1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kai K, Mizutani M, Kawamura N, Yamamoto R, Tamai M, Yamaguchi H et al (2008) Scopoletin is biosynthesized via ortho-hydroxylation of feruloyl CoA by a 2-oxoglutarate-dependent dioxygenase in Arabidopsis thaliana. Plant J 55(6):989–999

    Article  CAS  PubMed  Google Scholar 

  16. Bruni R, Barreca D, Protti M, Brighenti V, Righetti L, Anceschi L et al (2019) Botanical sources, chemistry, analysis, and biological activity of furanocoumarins of pharmaceutical interest. Molecules 24(11):2163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shimizu BI (2014) 2-Oxoglutarate-dependent dioxygenases in the biosynthesis of simple coumarins. Front Plant Sci. https://doi.org/10.3389/fpls.2014.00549

    Article  PubMed  PubMed Central  Google Scholar 

  18. Venhorst J, Onderwater RC, Meerman JH, Commandeur JN, Vermeulen NP (2000) Influence of N-substitution of 7-methoxy-4-(aminomethyl)-coumarin on cytochrome P450 metabolism and selectivity. Drug Metab Dispos 28(12):1524–1532

    CAS  PubMed  Google Scholar 

  19. Keizers PH, Lussenburg BM, de Graaf C, Mentink LM, Vermeulen NP, Commandeur JN (2004) Influence of phenylalanine 120 on cytochrome P450 2D6 catalytic selectivity and regiospecificity: crucial role in 7-methoxy-4-(aminomethyl)-coumarin metabolism. Biochem Pharmacol 68(11):2263–2271

    Article  CAS  PubMed  Google Scholar 

  20. Heravi MM, Khaghaninejad S, Mostofi M (2014) Chapter one—Pechmann reaction in the synthesis of coumarin derivatives. In: Katritzky AR (ed) Advances in heterocyclic chemistry. Academic Press, pp 1–50

    Google Scholar 

  21. Khan SA, Khan SB, Asiri AM, Ahmad I (2016) Zirconia-based catalyst for the one-pot synthesis of coumarin through Pechmann reaction. Nanoscale Res Lett 11(1):345

    Article  PubMed  PubMed Central  Google Scholar 

  22. Vekariya RH, Patel HD (2014) Recent advances in the synthesis of coumarin derivatives via Knoevenagel condensation: a review. Synth Commun 44(19):2756–2788

    Article  CAS  Google Scholar 

  23. Kumar BV, Naik HSB, Girija D, Kumar BV (2011) ZnO nanoparticle as catalyst for efficient green one-pot synthesis of coumarins through Knoevenagel condensation. J Chem Sci 123:615–621

    Article  CAS  Google Scholar 

  24. Heravi MM, Tajbakhsh M, Mohajerani B, Ghassemzadeh M (1999) An efficient Knoevenagel condensation using HZSM-5 zeolite as a catalyst. Indian J Chem 31:857–858

    Google Scholar 

  25. Oskooie HA, Heravi MM, Derikvand F, Khorasani M, Bamoharram FF (2006) On water: an efficient Knoevenagel condensation using 12-tungstophosphoric acid as a reusable green catalyst. Synth Commun 36(19):2819–2823

    Article  CAS  Google Scholar 

  26. Karami B, Farahi M, Khodabakhshi S (2012) Rapid synthesis of novel and known coumarin-3-carboxylic acids using stannous chloride dihydrate under solvent-free conditions. Helv Chim Acta 95(3):455–460

    Article  CAS  Google Scholar 

  27. Ghomi JS, Akbarzadeh Z (2018) Ultrasonic accelerated Knoevenagel condensation by magnetically recoverable MgFe2O4 nanocatalyst: a rapid and green synthesis of coumarins under solvent-free conditions. Ultrason Sonochem 40:78–83

    Article  CAS  PubMed  Google Scholar 

  28. Inul A, Abu T (2019) One-pot synthesis of coumarin derivatives. In: Venketeshwer R, Dennis M, Leticia R (eds) Phytochemicals in human health. IntechOpen, Rijeka

    Google Scholar 

  29. Rosen T (1991) The perkin reaction. In: Trost BM, Fleming I (Eds) Comprehensive organic synthesis, vol 1. Pergamon Press, Amsterdam, The Netherlands, pp 395–408. ISBN-13: 978-0-08-040592-6

    Book  Google Scholar 

  30. Xiao CF, Zou Y, Du JL, Sun HY, Liu XK (2012) Hydroxyl substitutional effect on selective synthesis of cis, trans stilbenes and 3-arylcoumarins through Perkin condensation. Synth Commun 42(9):1243–1258

    Article  CAS  Google Scholar 

  31. Augustine JK, Bombrun A, Ramappa B, Boodappa C (2012) An efficient one-pot synthesis of coumarins mediated by propylphosphonic anhydride (T3P) via the Perkin condensation. Tetrahedron Lett 53(33):4422–4425

    Article  CAS  Google Scholar 

  32. Abrams B, Diwu Z, Guryev O, Aleshkov S, Hingorani R, Edinger M et al (2009) 3-Carboxy-6-chloro-7-hydroxycoumarin: a highly fluorescent, water-soluble violet-excitable dye for cell analysis. Anal Biochem 386(2):262–269

    Article  CAS  PubMed  Google Scholar 

  33. Rashamuse TJ, Klein R, Kaye PT (2010) Synthesis of Baylis–Hillman-derived phosphonated 3-(benzylaminomethyl) coumarins. Synth Commun® 40(24):3683–3690

    Article  CAS  Google Scholar 

  34. Sharma U, Naveen T, Maji A, Manna S, Maiti D (2013) Palladium-catalyzed synthesis of benzofurans and coumarins from phenols and olefins. Angew Chem Int Ed 52(48):12669–12673

    Article  CAS  Google Scholar 

  35. Ferguson J, Zeng F, Alper H (2012) Synthesis of coumarins via Pd-catalyzed oxidative cyclocarbonylation of 2-vinylphenols. Org Lett 14(21):5602–5605

    Article  CAS  PubMed  Google Scholar 

  36. Priyanka SRK, Katiyar D (2016) Recent advances in transition-metal-catalyzed synthesis of coumarins. Synthesis 48(15):2303–2322

    Article  Google Scholar 

  37. Ulgheri F, Marchetti M, Piccolo O (2007) Enantioselective synthesis of (S)-and (R)-tolterodine by asymmetric hydrogenation of a coumarin derivative obtained by a Heck reaction. J Org Chem 72(16):6056–6059

    Article  CAS  PubMed  Google Scholar 

  38. Trost BM, Toste FD, Greenman K (2003) Atom economy. Palladium-catalyzed formation of coumarins by addition of phenols and alkynoates via a net C−H insertion. J Am Chem Soc 125(15):4518–4526

    Article  CAS  PubMed  Google Scholar 

  39. Oyamada J, Kitamura T (2006) Synthesis of coumarins by Pt-catalyzed hydroarylation of propiolic acids with phenols. Tetrahedron 62(29):6918–6925

    Article  CAS  Google Scholar 

  40. Heravi MM, Zadsirjan V, Malmir M, Mohammadi L (2021) Buchwald-Hartwig reaction: an update. Monatshefte für Chemie Chemical Monthly 152(10):1127–1171

    Article  CAS  Google Scholar 

  41. Polshettiwar V, Varma RS (2008) Microwave-assisted organic synthesis and transformations using benign reaction media. Acc Chem Res 41(5):629–639

    Article  CAS  PubMed  Google Scholar 

  42. Zhi S, Ma X, Zhang W (2019) Consecutive multicomponent reactions for the synthesis of complex molecules. Org Biomol Chem 17(33):7632–7650

    Article  CAS  PubMed  Google Scholar 

  43. Das A, Roy H, Ansary I (2018) Microwave-assisted, one-pot three-component synthesis of 6-(pyrrolyl) coumarin/quinolone derivatives catalyzed by in(III) chloride. ChemistrySelect 33:9592–9595

    Article  Google Scholar 

  44. Mishra R, Jana A, Panday AK, Choudhury LH (2018) Synthesis of fused pyrroles containing 4-hydroxycoumarins by regioselective metal-free multicomponent reactions. Org Biomol Chem 16(17):3289–3302

    Article  CAS  PubMed  Google Scholar 

  45. Gao Y, Zhang GN, Wang J, Bai X, Li Y, Wang Y (2018) One-pot synthesis of 3-functionalized 4-hydroxycoumarin under catalyst-free conditions. Molecules 23(1):235

    Article  PubMed  PubMed Central  Google Scholar 

  46. Schwendt G, Glasnov T (2017) Intensified synthesis of [3,4-d]triazole-fused chromenes, coumarins, and quinolones. Monatshefte für Chemie Chemical Monthly 148(1):69–75

    Article  CAS  Google Scholar 

  47. Dénès F, Pichowicz M, Povie G, Renaud P (2014) Thiyl radicals in organic synthesis. Chem Rev 114(5):2587–2693

    Article  PubMed  Google Scholar 

  48. Huang Y, Dömling A (2011) The Gewald multicomponent reaction. Mol Diversity 15(1):3–33

    Article  CAS  Google Scholar 

  49. Sibbing D, von Beckerath N, Morath T, Stegherr J, Mehilli J, Sarafoff N et al (2010) Oral anticoagulation with coumarin derivatives and antiplatelet effects of clopidogrel. Eur Heart J 31(10):1205–1211

    Article  CAS  PubMed  Google Scholar 

  50. Valente S, Bana E, Viry E, Bagrel D, Kirsch G (2010) Synthesis and biological evaluation of novel coumarin-based inhibitors of Cdc25 phosphatases. Bioorg Med Chem Lett 20(19):5827–5830

    Article  CAS  PubMed  Google Scholar 

  51. Sharifi Rad J, Cruz-Martins N, López-Jornet P, Lopez EPF, Harun N, Yeskaliyeva B et al (2021) Natural coumarins: exploring the pharmacological complexity and underlying molecular mechanisms. Oxid Med Cell Longev 2021:6492346

    Article  PubMed  PubMed Central  Google Scholar 

  52. Smyth T, Ramachandran V, Smyth W (2009) A study of the antimicrobial activity of selected naturally occurring and synthetic coumarins. Int J Antimicrob Agents 33(5):421–426

    Article  CAS  PubMed  Google Scholar 

  53. Bilgin HM, Atmaca M, Obay BD, Özekinci S, Taşdemir E, Ketani A (2011) Protective effects of coumarin and coumarin derivatives against carbon tetrachloride-induced acute hepatotoxicity in rats. Exp Toxicol Pathol 63(4):325–330

    Article  CAS  Google Scholar 

  54. Najmanova I, Dosedel M, Hrdina R, Anzenbacher P, Filipsky T, Riha M et al (2015) Cardiovascular effects of coumarins besides their antioxidant activity. Curr Top Med Chem 15(9):830–849

    Article  CAS  PubMed  Google Scholar 

  55. Kumar A, Kumar P, Shravya H, Pai A (2022) Coumarins as potential anticoagulant agents. Res J Pharm Technol 15(4):1659–1663

    Google Scholar 

  56. Tavares SJS, Lima V (2021) Bone anti-resorptive effects of coumarins on RANKL downstream cellular signaling: a systematic review of the literature. Fitoterapia 150:104842

    Article  CAS  PubMed  Google Scholar 

  57. Li H, Yao Y, Li L (2017) Coumarins as potential antidiabetic agents. J Pharm Pharmacol 69(10):1253–1264

    Article  CAS  PubMed  Google Scholar 

  58. Cruz LF, de Figueiredo GF, Pedro LP, Amorin YM, Andrade JT, Passos TF et al (2020) Umbelliferone (7-hydroxycoumarin): a non-toxic antidiarrheal and antiulcerogenic coumarin. Biomed Pharmacother 129:110432

    Article  CAS  PubMed  Google Scholar 

  59. Bansal Y, Sethi P, Bansal G (2013) Coumarin: a potential nucleus for anti-inflammatory molecules. Med Chem Res 22:3049–3060

    Article  CAS  Google Scholar 

  60. Rex JRS, Muthukumar NMSA, Selvakumar PM (2018) Phytochemicals as a potential source for anti-microbial, anti-oxidant and wound healing-a review. MOJ Biorg Org Chem 2(2):61–70. https://doi.org/10.15406/mojboc.2018.02.00058

    Article  Google Scholar 

  61. Li D, Wu L (2017) Coumarins from the roots of Angelica dahurica cause anti-allergic inflammation. Exp Ther Med 14(1):874–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zang Y (2020) Pharmacological activities of coumarin compounds in licorice: a review. Nat Prod Commun 15(9):1934578X20953954

    CAS  Google Scholar 

  63. Chen Z, Mao X, Liu A, Gao X, Chen X, Ye M et al (2015) Osthole, a natural coumarin improves cognitive impairments and BBB dysfunction after transient global brain ischemia in C57 BL/6J mice: involvement of Nrf2 pathway. Neurochem Res 40:186–194

    Article  CAS  PubMed  Google Scholar 

  64. Yamaguchi Y, Nishizono N, Kobayashi D, Yoshimura T, Wada K, Oda K (2017) Evaluation of synthesized coumarin derivatives on aromatase inhibitory activity. Bioorg Med Chem Lett 27(12):2645–2649

    Article  CAS  PubMed  Google Scholar 

  65. Leal LKAM, Silva AH, Viana GSdB (2017) Justicia pectoralis, a coumarin medicinal plant have potential for the development of antiasthmatic drugs? Rev Bras 27(6):794–802. https://doi.org/10.1016/j.bjp.2017.09.005

    Article  CAS  Google Scholar 

  66. Río JAD, Díaz L, García-Bernal D, Blanquer M, Ortuño A, Correal E et al (2014) Chapter 5—Furanocoumarins: biomolecules of therapeutic interest. In: Attaur R (ed) Studies in natural products chemistry. Elsevier, pp 145–95

    Google Scholar 

  67. Borges Bubols G, da Rocha VD, Medina-Remon A, von Poser G, Maria Lamuela-Raventos R, Lucia Eifler-Lima V et al (2013) The antioxidant activity of coumarins and flavonoids. Mini Rev Med Chem 13(3):318–334

    Google Scholar 

  68. Oketch-Rabah HA, Mwangi JW, Lisgarten J, Mberu EK (2000) A new antiplasmodial coumarin from Toddalia asiatica roots. Fitoterapia 71(6):636–640

    Article  CAS  PubMed  Google Scholar 

  69. Patil SB (2022) Medicinal significance of novel coumarin analogs: recent studies. Results Chem 4:100313

    Article  CAS  Google Scholar 

  70. Mbaba M, Dingle LMK, Zulu AI, Laming D, Swart T, de la Mare JA et al (2021) Coumarin-annulated ferrocenyl 1,3-oxazine derivatives possessing in vitro antimalarial and antitrypanosomal potency. Molecules 26(5):1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Grötz K, Wüstenberg P, Kohnen R, Al-Nawas B, Henneicke-von Zepelin HH, Bockisch A et al (2001) Prophylaxis of radiogenic sialadenitis and mucositis by coumarin/troxerutine in patients with head and neck cancer—a prospective, randomized, placebo-controlled, double-blind study. Br J Oral Maxillofac Surg 39(1):34–39

    Article  PubMed  Google Scholar 

  72. Thornes R, Lynch G, Sheehan M (1982) Cimetidine and coumarin therapy of melanoma. Lancet 320(8293):328

    Article  Google Scholar 

  73. Pitaro M, Croce N, Gallo V, Arienzo A, Salvatore G, Antonini G (2022) Coumarin-induced hepatotoxicity: a narrative review. Molecules 27(24):9063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Abraham K, Wöhrlin F, Lindtner O, Heinemeyer G, Lampen A (2010) Toxicology and risk assessment of coumarin: focus on human data. Mol Nutr Food Res 54(2):228–239

    Article  CAS  PubMed  Google Scholar 

  75. Rangaswami S, Seshadri TR, Venkateswarlu V (1941) The remarkable fluorescence of certain coumarin derivatives. Proc Indian Acad Sci Sect A 13(4):316–321

    Article  Google Scholar 

  76. Annunziata F, Pinna C, Dallavalle S, Tamborini L, Pinto A (2020) An overview of coumarin as a versatile and readily accessible scaffold with broad-ranging biological activities. Int J Mol Sci 21(13):4618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Raunio H, Pentikäinen O, Juvonen RO (2020) Coumarin-based profluorescent and fluorescent substrates for determining xenobiotic-metabolizing enzyme activities in vitro. Int J Mol Sci 21(13):4708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kurt A, Gündüz B, Koca M (2019) A detailed study on the optical properties of 3-benzoyl-7-hydroxy coumarin compound in different solvents and concentrations. Maced J Chem Chem Eng 38(2):227–236

    Article  CAS  Google Scholar 

  79. Whitaker JE, Haugland RP, Moore PL, Hewitt PC, Reese M, Haugland RP (1991) Cascade blue derivatives: water soluble, reactive, blue emission dyes evaluated as fluorescent labels and tracers. Anal Biochem 198(1):119–130

    Article  CAS  PubMed  Google Scholar 

  80. Nakamura A, Honma N, Tanaka Y, Suzuki Y, Shida Y, Tsuda Y et al (2021) 7-Aminocoumarin-4-acetic acid as a fluorescent probe for detecting bacterial dipeptidyl peptidase activities in water-in-oil droplets and in bulk. Anal Chem 94(5):2416–2424

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kuziv I, Dubey L, Dubey I (2020) Synthesis, spectral properties and evaluation of carboxy-functionalized 3-thiazolylcoumarins as blue-emitting fluorescent labeling reagents. Tetrahedron Lett 61(35):152227

    Article  CAS  Google Scholar 

  82. Du L, Li M, Zheng S, Wang B (2008) Rational design of a fluorescent hydrogen peroxide probe based on the umbelliferone fluorophore. Tetrahedron Lett 49(19):3045–3048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gandioso A, Bresolí-Obach R, Nin-Hill A, Bosch M, Palau M, Galindo A et al (2018) Redesigning the coumarin scaffold into small bright fluorophores with far-red to near-infrared emission and large Stokes shifts useful for cell imaging. J Org Chem 83(3):1185–1195

    Article  CAS  PubMed  Google Scholar 

  84. González-Pérez M, Ooi SY, Martins S, Prates Ramalho JP, Pereira A, Caldeira AT (2018) Gaining insight into the photophysical properties of a coumarin STP ester with potential for bioconjugation. New J Chem 42(20):16635–16645

    Article  Google Scholar 

  85. Song HY, Ngai MH, Song ZY, MacAry PA, Hobley J, Lear MJ (2009) Practical synthesis of maleimides and coumarin-linked probes for protein and antibody labelling via reduction of native disulfides. Org Biomol Chem 7(17):3400–3406

    Article  CAS  PubMed  Google Scholar 

  86. Xu Y, Jiang Z, Xiao Y, Bi FZ, Miao JY, Zhao BX (2014) A new fluorescent pH probe for extremely acidic conditions. Anal Chim Acta 820:146–151

    Article  CAS  PubMed  Google Scholar 

  87. Yi L, Li H, Sun L, Liu L, Zhang C, Xi Z (2009) A highly sensitive fluorescence probe for fast thiol-quantification assay of glutathione reductase. Angew Chem 48(22):4034–4037

    Article  CAS  Google Scholar 

  88. Lee KS, Kim TK, Lee JH, Kim HJ, Hong JI (2008) Fluorescence turn-on probe for homocysteine and cysteine in water. Chem Commun 46:6173–6175

    Article  Google Scholar 

  89. Gupta VK, Mergu N, Kumawat LK, Singh AK (2015) Selective naked-eye detection of magnesium (II) ions using a coumarin-derived fluorescent probe. Sens Actuators, B Chem 207:216–223

    Article  CAS  Google Scholar 

  90. Li J, Zhang CF, Ming ZZ, Yang WC, Yang GF (2013) Novel coumarin-based sensitive and selective fluorescent probes for biothiols in aqueous solution and in living cells. RSC Adv 3(48):26059–26065

    Article  CAS  Google Scholar 

  91. You QH, Lee AWM, Chan WH, Zhu XM, Leung KCF (2014) A coumarin-based fluorescent probe for recognition of Cu2+ and fast detection of histidine in hard-to-transfect cells by a sensing ensemble approach. Chem Commun 50(47):6207–6210

    Article  CAS  Google Scholar 

  92. En D, Guo Y, Chen BT, Dong B, Peng MJ (2014) Coumarin-derived Fe3+ selective fluorescent turn-off chemosensors: synthesis, properties, and applications in living cells. RSC Adv 4(1):248–253

    Article  Google Scholar 

  93. Huo FJ, Sun YQ, Su J, Yang YT, Yin CX, Chao JB (2010) Chromene “lock”, thiol “key”, and mercury(II) ion “hand”: a single molecular machine recognition system. Org Lett 12(21):4756–4759

    Article  CAS  PubMed  Google Scholar 

  94. Ray D, Bharadwaj PK (2008) A coumarin-derived fluorescence probe selective for magnesium. Inorg Chem 47(7):2252–2254

    Article  CAS  PubMed  Google Scholar 

  95. Wu MY, Li K, Hou JT, Huang Z, Yu XQ (2012) A selective colorimetric and ratiometric fluorescent probe for hydrogen sulfide. Org Biomol Chem 10(41):8342–8347

    Article  CAS  PubMed  Google Scholar 

  96. Chen B, Li W, Lv C, Zhao M, Jin H, Jin H et al (2013) Fluorescent probe for highly selective and sensitive detection of hydrogen sulfide in living cells and cardiac tissues. Analyst 138(3):946–951

    Article  CAS  PubMed  Google Scholar 

  97. Sun XY, Liu T, Sun J, Wang XJ (2020) Synthesis and application of coumarin fluorescence probes. RSC Adv 10(18):10826–10847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wu C, Wang J, Shen J, Bi C, Zhou H (2017) Coumarin-based Hg2+ fluorescent probe: synthesis and turn-on fluorescence detection in neat aqueous solution. Sens Actuator B Chem 243:678–683

    Article  CAS  Google Scholar 

  99. Signore G, Nifosì R, Albertazzi L, Storti B, Bizzarri R (2010) Polarity-sensitive coumarins tailored to live cell imaging. J Am Chem Soc 132(4):1276–1288

    Article  CAS  PubMed  Google Scholar 

  100. Qin JC, Fan L, Yang ZY (2016) A small-molecule and resumable two-photon fluorescent probe for Zn2+ based on a coumarin Schiff-base. Sens Actuator B Chem 228:156–161

    Article  CAS  Google Scholar 

  101. Shiraishi Y, Hayashi N, Nakamura M, Hirai T (2016) Coumarin–imine–quinoxaline linkage designed based on the Strecker reaction as a receptor for fluorometric cyanide anion detection in neutral media. Chem Lett 45(11):1294–1296

    Article  CAS  Google Scholar 

  102. Ding Y, Zhao S, Wang Q, Yu X, Zhang W (2018) Construction of a coumarin based fluorescent sensing platform for palladium and hydrazine detection. Sens Actuators, B Chem 256:1107–1113

    Article  CAS  Google Scholar 

  103. Cui L, Ji C, Peng Z, Zhong L, Zhou C, Yan L et al (2014) Unique tri-output optical probe for specific and ultrasensitive detection of hydrazine. Anal Chem 86(9):4611–4617

    Article  CAS  PubMed  Google Scholar 

  104. Ghosh AC, Weisz K, Schulzke C (2016) Selective capture of Ni2+ ions by naphthalene and coumarin-substituted dithiolenes. Eur J Inorg Chem 2016(2):208–218

    Article  CAS  Google Scholar 

  105. Trenor SR, Shultz AR, Love BJ, Long TE (2004) Coumarins in polymers: from light harvesting to photo-cross-linkable tissue scaffolds. Chem Rev 104(6):3059–3078

    Article  CAS  PubMed  Google Scholar 

  106. Prabhugouda M, Lagare MT, Mallikarjuna NN, Naidu BVK, Aminabhavi TM (2005) Energy transfer processes between primary and secondary dopants in polystyrene solutions dissolved in 1,4-dioxane. J Appl Polym Sci 95(2):336–341

    Article  CAS  Google Scholar 

  107. Corrales T, Abrusci C, Peinado C, Catalina F (2004) Fluorescent sensor as physical amplifier of chemiluminescence: application to the study of poly (ethylene terephthalate). Macromolecules 37(17):6596–6605

    Article  CAS  Google Scholar 

  108. Frenette M, Ivan MG, Scaiano J (2005) Use of fluorescent probes to determine catalytic chain length in chemically amplified resists. Can J Chem 83(6–7):869–874

    Article  CAS  Google Scholar 

  109. Mason MD, Ray K, Pohlers G, Cameron JF, Grober RD (2003) Probing the local pH of polymer photoresist films using a two-color single molecule nanoprobe. J Phys Chem B 107(51):14219–14224

    Article  CAS  Google Scholar 

  110. Scaiano JC, Aliaga C, Chrétien MN, Frenette M, Focsaneanu KS, Mikelsons L (2005) Fluorescence sensor applications as detectors for DNA damage, free radical formation, and in microlithography. Pure Appl Chem 77(6):1009–1018

    Article  CAS  Google Scholar 

  111. Oh JK, Stöeva V, Rademacher J, Farwaha R, Winnik MA (2004) Synthesis, characterization, and emulsion polymerization of polymerizable coumarin derivatives. J Polym Sci, Part A: Polym Chem 42(14):3479–3489

    Article  CAS  Google Scholar 

  112. Corrent S, Hahn P, Pohlers G, Connolly TJ, Scaiano J, Fornés V et al (1998) Intrazeolite Photochemistry. 22. Acid–base properties of coumarin 6. Characterization in solution, the solid state, and incorporated into supramolecular systems. J Phys Chem B 102(30):5852–5858

    Article  CAS  Google Scholar 

  113. Kamijo T, Yamaguchi A, Suzuki S, Teramae N, Itoh T, Ikeda T (2008) Solvation dynamics of coumarin 153 in alcohols confined in silica nanochannels. J Phys Chem A 112(46):11535–11542

    Article  CAS  PubMed  Google Scholar 

  114. Yeh JT, Chen WC, Liu SR, Wu SP (2014) A coumarin-based sensitive and selective fluorescent sensor for copper(II) ions. New J Chem 38(9):4434–4439

    Article  CAS  Google Scholar 

  115. García-Beltrán O, Cassels BK, Pérez C, Mena N, Núñez MT, Martínez NP et al (2014) Coumarin-based fluorescent probes for dual recognition of copper(II) and iron(III) ions and their application in bio-imaging. Sensors 14(1):1358–1371

    Article  PubMed  PubMed Central  Google Scholar 

  116. Zehra S, Khan RA, Alsalme A, Tabassum S (2019) Coumarin derived “turn on” fluorescent sensor for selective detection of cadmium (II) ion: spectroscopic studies and validation of sensing mechanism by DFT calculations. J Fluoresc 29(4):1029–1037

    Article  CAS  PubMed  Google Scholar 

  117. Zhu S, Lin W, Yuan L (2013) Development of a ratiometric fluorescent pH probe for cell imaging based on a coumarin–quinoline platform. Dyes Pigm 99(2):465–471

    Article  CAS  Google Scholar 

  118. Cigáň M, Gašpar J, Gáplovská K, Holekšiová J, Jakusová K, Donovalová J et al (2016) Coumarin phenylsemicarbazones: sensitive colorimetric and fluorescent “turn-on” chemosensors for low-level water content in aprotic organic solvents. New J Chem 40(10):8946–8953

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh for providing the necessary infrastructure to carry out this work. The authors are also thankful to Amity University for providing the necessary library facility for the compilation of information.

Funding

The authors have received no funding.

Author information

Authors and Affiliations

Authors

Contributions

E.G. wrote the introduction and application of the manuscript text, and D.G. prepared the graphical abstract and other figures and schemes. D.G. and K.B. edited and reviewed the manuscript. K.B. complied Table 1 and Scheme 1. The overall revision and correction was done by D. G. All authors reviewed the manuscript.

Corresponding author

Correspondence to Deepshikha Gupta.

Ethics declarations

Conflicts of Interest

No conflicts of interest are present.

Human and Animal Rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, D., Guliani, E. & Bajaj, K. Coumarin—Synthetic Methodologies, Pharmacology, and Application as Natural Fluorophore. Top Curr Chem (Z) 382, 16 (2024). https://doi.org/10.1007/s41061-024-00462-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-024-00462-z

Keywords

Navigation