Skip to main content

Advertisement

Log in

Achaete-scute like 2 (ascl2) is a target of Wnt signalling and is upregulated in intestinal neoplasia

  • Original Article
  • Published:
Oncogene Submit manuscript

Abstract

Achaete-scute like (ASCL)2 is a basic helix–loop–helix transcription factor essential for the maintenance of proliferating trophoblasts during placental development. Using oligonucleotide microarrays we identified ascl2 as a gene significantly upregulated in colorectal adenocarcinomas (n=36 cancers, n=16 normals; 15-fold, P<0.0001). This finding was confirmed by quantitative reverse transcriptase (RT)–PCR on large intestinal cancers (n=29 cancers, n=16 normals; 10-fold, P<0.0001). In situ hybridization for ascl2 demonstrated expression at the base of small and large intestinal crypts (n=304), but in no other normal tissues excepting placenta. By in situ hybridization, 52–71% of colorectal adenomas (n=187), 50–73% of large (n=327) and 33–64% of small intestinal adenocarcinomas (n=124) were positive for ascl2 expression. Upregulation of murine ascl2 was also observed using oligonucleotide microarrays, quantitative RT–PCR and in situ hybridization on apcmin/+ and apc1638N/+ smad4−/+ tumours. Tumour cell lines stably transfected with LEF1DN or APC2, or transiently transfected with short-interfering RNA (siRNA) against β-catenin showed a significant downregulation of ascl2. Colocalization of ascl2 with nuclear β-catenin was observed in 73 small intestinal adenocarcinomas (P=0.0008) and apcmin/+ tumours. Preliminary in vitro data suggest ascl2 may promote progression through the G2/M cell cycle checkpoint. In summary, ascl2 is a putative regulator of proliferation that is overexpressed in intestinal neoplasia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Alders M, Hodges M, Hadjantonakis AK, Postmus J, van Wijk I, Bliek J et al. (1997). Hum Mol Genet 6: 859–867.

  • Banerjea A, Ahmed S, Hands RE, Huang F, Han X, Shaw PM et al. (2004). Mol Cancer 3: 21.

  • Cui H, Horon IL, Ohlsson R, Hamilton SR, Feinberg AP . (1998). Nat Med 4: 1276–1280.

  • Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J et al. (2003). Genes Dev 17: 1115–1129.

  • Guillemot F, Caspary T, Tilghman SM, Copeland NG, Gilbert DJ, Jenkins NA et al. (1995). Nat Genet 9: 235–242.

  • Guillemot F, Lo LC, Johnson JE, Auerbach A, Anderson DJ, Joyner AL . (1993). Cell 75: 463–476.

  • Guillemot F, Nagy A, Auerbach A, Rossant J, Joyner AL . (1994). Nature 371: 333–336.

  • Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB . (1996). Proc Natl Acad Sci USA 93: 9821–9826.

  • Hernandez S, Bessa X, Bea S, Hernandez L, Nadal A, Mallofre C et al. (2001). Lab Invest 81: 465–473.

  • Johnson JE, Birren SJ, Anderson DJ . (1990). Nature 346: 858–861.

  • Jubb AM, Landon TH, Burwick J, Pham TQ, Frantz GD, Cairns B et al. (2003). J Pathol 200: 577–588.

  • Leow CC, Romero MS, Ross S, Polakis P, Gao WQ . (2004). Cancer Res 64: 6050–6057.

  • Massari ME, Murre C . (2000). Mol Cell Biol 20: 429–440.

  • Miyamoto T, Hasuike S, Jinno Y, Soejima H, Yun K, Miura K et al. (2002). J Assist Reprod Genet 19: 240–244.

  • Morison IM, Ramsay JP, Spencer HG . (2005). Trends Genet 21: 457–465.

  • Myohanen SK, Baylin SB, Herman JG . (1998). Cancer Res 58: 591–593.

  • Olmeda D, Castel S, Vilaro S, Cano A . (2003). Mol Biol Cell 14: 2844–2860.

  • Rodel F, Hoffmann J, Distel L, Herrmann M, Noisternig T, Papadopoulos T et al. (2005). Cancer Res 65: 4881–4887.

  • Sansom OJ, Reed KR, Hayes AJ, Ireland H, Brinkmann H, Newton IP et al. (2004). Genes Dev 18: 1385–1390.

  • van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A et al. (2002). Cell 111: 241–250.

  • Westerman BA, Neijenhuis S, Poutsma A, Steenbergen RD, Breuer RH, Egging M et al. (2002). Clin Cancer Res 8: 1082–1086.

  • Westerman BA, Poutsma A, Looijenga LH, Wouters D, van Wijk IJ, Oudejans CB . (2001). Placenta 22: 511–518.

  • Yang S, Toy K, Ingle G, Zlot C, Williams PM, Fuh G et al. (2002). Arterioscler Thromb Vasc Biol 22: 1797–1803.

  • Zhang T, Otevrel T, Gao Z, Ehrlich SM, Fields JZ, Boman BM . (2001). Cancer Res 61: 8664–8667.

  • Zheng S, Chen P, McMillan A, Lafuente A, Lafuente MJ, Ballesta A . (2000). Carcinogenesis 21: 2057–2064.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A M Jubb.

Additional information

Supplementary Information accompanies the paper on Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jubb, A., Chalasani, S., Frantz, G. et al. Achaete-scute like 2 (ascl2) is a target of Wnt signalling and is upregulated in intestinal neoplasia. Oncogene 25, 3445–3457 (2006). https://doi.org/10.1038/sj.onc.1209382

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209382

  • Springer Nature Limited

Keywords

This article is cited by

Navigation