Skip to main content

Advertisement

Log in

The truncated AXIN1 isoform promotes hepatocellular carcinoma metastasis through SRSF9-mediated exon 9 skipping

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Axis inhibitor protein 1 (AXIN1) is a protein recognized for inhibiting tumor growth and is commonly involved in cancer development. In this study, we explored the potential molecular mechanisms that connect alternative splicing of AXIN1 to the metastasis of hepatocellular carcinoma (HCC). Transcriptome sequencing, RT‒PCR, qPCR and Western blotting were utilized to determine the expression levels of AXIN1 in human HCC tissues and HCC cells. The effects of the AXIN1 exon 9 alternative splice isoform and SRSF9 on the migration and invasion of HCC cells were assessed through wound healing and Transwell assays, respectively. The interaction between SRSF9 and AXIN1 was investigated using UV crosslink RNA immunoprecipitation, RNA pulldown, and RNA immunoprecipitation assays. Furthermore, the involvement of the AXIN1 isoform and SRSF9 in HCC metastasis was validated in a nude mouse model. AXIN1-L (exon 9 including) expression was downregulated, while AXIN1-S (exon 9 skipping) was upregulated in HCC. SRSF9 promotes the production of AXIN1-S by interacting with the sequence of exons 8 and 10 of AXIN1. AXIN1-S significantly promoted HCC cells migration and invasion by activating the Wnt pathway, while the opposite effects were observed for AXIN1-L. In vivo experiments demonstrated that AXIN1-L inhibited HCC metastasis, whereas SRSF9 promoted HCC metastasis in part by regulating the level of AXIN1-S. AXIN1, a tumor suppressor protein that targets the AXIN1/Wnt/β-catenin signaling axis, may be a promising prognostic factor and a valuable therapeutic target for HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All relevant data necessary for confirming the results reported in the paper are presented herein or are available from the authors upon reasonable request.

References

  1. Wen N, Cai Y, Li F, Ye H, Tang W, Song P, Cheng N (2022) The clinical management of hepatocellular carcinoma worldwide: a concise review and comparison of current guidelines: 2022 update. Biosci Trends 16:20–30. https://doi.org/10.5582/bst.2022.01061

    Article  PubMed  Google Scholar 

  2. Zhu J, Wu Y, Lao S, Shen J, Yu Y, Fang C, Zhang N, Li Y, Zhang R (2021) Targeting TRIM54/Axin1/beta-catenin axis prohibits proliferation and metastasis in hepatocellular carcinoma. Front Oncol 11:759842. https://doi.org/10.3389/fonc.2021.759842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang Y, Qian J, Gu C, Yang Y (2021) Alternative splicing and cancer: a systematic review. Signal Transduct Target Ther 6:78. https://doi.org/10.1038/s41392-021-00486-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Singh B, Eyras E (2017) The role of alternative splicing in cancer. Transcription 8:91–98. https://doi.org/10.1080/21541264.2016.1268245

    Article  CAS  PubMed  Google Scholar 

  5. Mazzoni SM, Fearon ER (2014) AXIN1 and AXIN2 variants in gastrointestinal cancers. Cancer Lett 355:1–8. https://doi.org/10.1016/j.canlet.2014.09.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Qin A, Wu J, Zhai M, Lu Y, Huang B, Lu X, Jiang X, Qiao Z (2020) Axin1 inhibits proliferation, invasion, migration and EMT of hepatocellular carcinoma by targeting miR-650. Am J Transl Res 12:1114–1122

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Elkhadragy L, Dasteh Goli K, Totura WM, Carlino MJ, Regan MR, Guzman G, Schook LB, Gaba RC, Schachtschneider KM (2022) Effect of CRISPR knockout of AXIN1 or ARID1A on proliferation and migration of porcine hepatocellular carcinoma. Front Oncol 12:904031. https://doi.org/10.3389/fonc.2022.904031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marasco LE, Kornblihtt AR (2023) The physiology of alternative splicing. Nat Rev Mol Cell Biol 24:242–254. https://doi.org/10.1038/s41580-022-00545-z

    Article  CAS  PubMed  Google Scholar 

  9. Ha J, Jang H, Choi N, Oh J, Min C, Pradella D, Jung DW, Williams DR, Park D, Ghigna C, Zheng X, Shen H (2021) SRSF9 regulates cassette exon splicing of caspase-2 by interacting with its downstream exon. Cells. https://doi.org/10.3390/cells10030679

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang X, Lu X, Wang P, Chen Q, Xiong L, Tang M, Hong C, Lin X, Shi K, Liang L, Lin J (2022) SRSF9 promotes colorectal cancer progression via stabilizing DSN1 mRNA in an m6A-related manner. J Transl Med 20:198. https://doi.org/10.1186/s12967-022-03399-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang G, Liu B, Shang H, Wu G, Wu D, Wang L, Li S, Wang Z, Wang S, Yuan J (2022) High expression of serine and arginine-rich splicing factor 9 (SRSF9) is associated with hepatocellular carcinoma progression and a poor prognosis. BMC Med Genomics 15:180. https://doi.org/10.1186/s12920-022-01316-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fu Y, Huang B, Shi Z, Han J, Wang Y, Huangfu J, Wu W (2013) SRSF1 and SRSF9 RNA binding proteins promote Wnt signalling-mediated tumorigenesis by enhancing beta-catenin biosynthesis. EMBO Mol Med 5:737–750. https://doi.org/10.1002/emmm.201202218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  14. Zhang B, Xie SH, Hu JY, Lei SJ, Shen LH, Liu HT, Zheng Q, Zhang ZM, Wu CL, Li Q, Wang F (2023) Truncated SCRIB isoform promotes breast cancer metastasis through HNRNP A1 mediated exon 16 skipping. Acta Pharmacol Sin 44:2307–2321. https://doi.org/10.1038/s41401-023-01116-4

    Article  CAS  PubMed  Google Scholar 

  15. Shen L, Lei S, Zhang B, Li S, Huang L, Czachor A, Breitzig M, Gao Y, Huang M, Mo X, Zheng Q, Sun H, Wang F (2020) Skipping of exon 10 in Axl pre-mRNA regulated by PTBP1 mediates invasion and metastasis process of liver cancer cells. Theranostics 10:5719–5735. https://doi.org/10.7150/thno.42010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jin YJ, Byun S, Han S, Chamberlin J, Kim D, Kim MJ, Lee Y (2019) Differential alternative splicing regulation among hepatocellular carcinoma with different risk factors. BMC Med Genomics 12:175. https://doi.org/10.1186/s12920-019-0635-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee SE, Alcedo KP, Kim HJ, Snider NT (2020) Alternative Splicing in Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol 10:699–712. https://doi.org/10.1016/j.jcmgh.2020.04.018

    Article  PubMed  PubMed Central  Google Scholar 

  18. Li S, Hu Z, Zhao Y, Huang S, He X (2019) transcriptome-wide analysis reveals the landscape of aberrant alternative splicing events in liver cancer. Hepatology 69:359–375. https://doi.org/10.1002/hep.30158

    Article  CAS  PubMed  Google Scholar 

  19. Hou Y, Ding M, Wang C, Yang X, Ye T, Yu H (2020) TRIM11 promotes lymphomas by activating the beta-catenin signaling and Axin1 ubiquitination degradation. Exp Cell Res 387:111750. https://doi.org/10.1016/j.yexcr.2019.111750

    Article  CAS  PubMed  Google Scholar 

  20. Conte A, Valente V, Paladino S, Pierantoni GM (2023) HIPK2 in cancer biology and therapy: recent findings and future perspectives. Cell Signal 101:110491. https://doi.org/10.1016/j.cellsig.2022.110491

    Article  CAS  PubMed  Google Scholar 

  21. Klement K, Bruckner M, Bernkopf DB (2023) Phosphorylation of axin within biomolecular condensates counteracts its tankyrase-mediated degradation. J Cell Sci. https://doi.org/10.1242/jcs.261214

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rui Y, Xu Z, Lin S, Li Q, Rui H, Luo W, Zhou HM, Cheung PY, Wu Z, Ye Z, Li P, Han J, Lin SC (2004) Axin stimulates p53 functions by activation of HIPK2 kinase through multimeric complex formation. EMBO J 23:4583–4594. https://doi.org/10.1038/sj.emboj.7600475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yuan J, Liu Z, Wu Z, Yang J, Lv T (2022) Comprehensive molecular analysis identified an SRSF family-based score for prognosis and therapy efficiency prediction in hepatocellular carcinoma. Cancers (Basel). https://doi.org/10.3390/cancers14194727

    Article  PubMed  PubMed Central  Google Scholar 

  24. Basei FL, Moura LAR, Kobarg J (2021) Using the E1A minigene tool to study mRNA splicing changes. J Vis Exp. https://doi.org/10.3791/62181

    Article  PubMed  Google Scholar 

  25. Paradis C, Cloutier P, Shkreta L, Toutant J, Klarskov K, Chabot B (2007) hnRNP I/PTB can antagonize the splicing repressor activity of SRp30c. RNA 13:1287–1300. https://doi.org/10.1261/rna.403607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu Q, Fang L, Wu C (2022) Alternative splicing and isoforms: from mechanisms to diseases. Genes (Basel). https://doi.org/10.3390/genes13030401

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yang Q, Zhao J, Zhang W, Chen D, Wang Y (2019) Aberrant alternative splicing in breast cancer. J Mol Cell Biol 11:920–929. https://doi.org/10.1093/jmcb/mjz033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Du X, Chen D, Lin Z, Dong Z, Lu Y, Liu L, Wu D (2019) Efficacy of apatinib in advanced hepatocellular carcinoma with lung metastasis: a retrospective, multicenter study. J BUON 24:1956–1963

    PubMed  Google Scholar 

  29. Yang LY, Luo Q, Lu L, Zhu WW, Sun HT, Wei R, Lin ZF, Wang XY, Wang CQ, Lu M, Jia HL, Chen JH, Zhang JB, Qin LX (2020) Increased neutrophil extracellular traps promote metastasis potential of hepatocellular carcinoma via provoking tumorous inflammatory response. J Hematol Oncol 13:3. https://doi.org/10.1186/s13045-019-0836-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhu L, Tian Q, Gao H, Wu K, Wang B, Ge G, Jiang S, Wang K, Zhou C, He J, Liu P, Ren Y, Wang B (2022) PROX1 promotes breast cancer invasion and metastasis through WNT/beta-catenin pathway via interacting with hnRNPK. Int J Biol Sci 18:2032–2046. https://doi.org/10.7150/ijbs.68960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li Y, Liu C, Zhang X, Huang X, Liang S, Xing F, Tian H (2022) CCT5 induces epithelial-mesenchymal transition to promote gastric cancer lymph node metastasis by activating the Wnt/beta-catenin signalling pathway. Br J Cancer 126:1684–1694. https://doi.org/10.1038/s41416-022-01747-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vogel A, Meyer T, Sapisochin G, Salem R, Saborowski A (2022) Hepatocellular carcinoma. Lancet 400:1345–1362. https://doi.org/10.1016/S0140-6736(22)01200-4

    Article  CAS  PubMed  Google Scholar 

  33. Zhou HZ, Li F, Cheng ST, Xu Y, Deng HJ, Gu DY, Wang J, Chen WX, Zhou YJ, Yang ML, Ren JH, Zheng L, Huang AL, Chen J (2022) DDX17-regulated alternative splicing that produced an oncogenic isoform of PXN-AS1 to promote HCC metastasis. Hepatology 75:847–865. https://doi.org/10.1002/hep.32195

    Article  CAS  PubMed  Google Scholar 

  34. Salahshor S, Woodgett JR (2005) The links between axin and carcinogenesis. J Clin Pathol 58:225–236. https://doi.org/10.1136/jcp.2003.009506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang X, Farrell AS, Daniel CJ, Arnold H, Scanlan C, Laraway BJ, Janghorban M, Lum L, Chen D, Troxell M, Sears R (2012) Mechanistic insight into Myc stabilization in breast cancer involving aberrant Axin1 expression. Proc Natl Acad Sci U S A 109:2790–2795. https://doi.org/10.1073/pnas.1100764108

    Article  PubMed  Google Scholar 

  36. Yu F, Yu C, Li F, Zuo Y, Wang Y, Yao L, Wu C, Wang C, Ye L (2021) Wnt/beta-catenin signaling in cancers and targeted therapies. Signal Transduct Target Ther 6:307. https://doi.org/10.1038/s41392-021-00701-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhao H, Ming T, Tang S, Ren S, Yang H, Liu M, Tao Q, Xu H (2022) Wnt signaling in colorectal cancer: pathogenic role and therapeutic target. Mol Cancer 21:144. https://doi.org/10.1186/s12943-022-01616-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li Q, Wang X, Wu X, Rui Y, Liu W, Wang J, Wang X, Liou YC, Ye Z, Lin SC (2007) Daxx cooperates with the Axin/HIPK2/p53 complex to induce cell death. Cancer Res 67:66–74. https://doi.org/10.1158/0008-5472.CAN-06-1671

    Article  CAS  PubMed  Google Scholar 

  39. Han W, Koo Y, Chaieb L, Keum BR, Han JK (2022) UCHL5 controls beta-catenin destruction complex function through Axin1 regulation. Sci Rep 12:3687. https://doi.org/10.1038/s41598-022-07642-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pandit S, Zhou Y, Shiue L, Coutinho-Mansfield G, Li H, Qiu J, Huang J, Yeo GW, Ares M Jr, Fu XD (2013) Genome-wide analysis reveals SR protein cooperation and competition in regulated splicing. Mol Cell 50:223–235. https://doi.org/10.1016/j.molcel.2013.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Moon H, Cho S, Loh TJ, Jang HN, Liu Y, Choi N, Oh J, Ha J, Zhou J, Cho S, Kim DE, Ye MB, Zheng X, Shen H (2017) SRSF2 directly inhibits intron splicing to suppresses cassette exon inclusion. BMB Rep 50:423–428. https://doi.org/10.5483/bmbrep.2017.50.8.103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Han J, Ding JH, Byeon CW, Kim JH, Hertel KJ, Jeong S, Fu XD (2011) SR proteins induce alternative exon skipping through their activities on the flanking constitutive exons. Mol Cell Biol 31:793–802. https://doi.org/10.1128/MCB.01117-10

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Guangzhou Basic and Applied Basic Research Project (NO. 202201010010), the Natural Science Foundation of Guangdong Province (NO. 2022A1515012636 and 2024A1515013257), the Quality Engineering Construction Project of Jinan University.

Funding

This work was supported by the Guangzhou Basic and Applied Basic Research Project (NO. 202201010010), the Natural Science Foundation of Guangdong Province (NO. 2022A1515012636), the Quality Engineering Construction Project and Talents Plan of Jinan University, and the High-level University Construction Project.

Author information

Authors and Affiliations

Authors

Contributions

Q.Q.Z. performed the experiments and analyzed the data. Q.Q.Z. wrote the manuscript, prepared the figures and revised the paper. Q.Q.Z., J.Y.H., Y.S.M., R.X.L. and Y.X.H. discussed the results and revised the manuscript extensively. F.W. conceived and oversaw the project.

Corresponding author

Correspondence to Feng Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare no competing interests.

Ethics approval

All animal procedures were performed in accordance with the Jinan University Experimental Animal Care Commission and conformed to the Principles of Laboratory Animal Care (NIH publication No. 85–23, revised 1985). Animal studies were reported in compliance with the ARRIVE guidelines.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 808 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Qq., Miao, Ys., Hu, Jy. et al. The truncated AXIN1 isoform promotes hepatocellular carcinoma metastasis through SRSF9-mediated exon 9 skipping. Mol Cell Biochem (2024). https://doi.org/10.1007/s11010-024-05012-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-024-05012-1

Keywords

Navigation