Skip to main content

Advertisement

Log in

Intraoperative imaging in pathology-assisted surgery

  • Perspective
  • Published:

From Nature Biomedical Engineering

View current issue Submit your manuscript

Abstract

The pathological assessment of surgical specimens during surgery can reduce the incidence of positive resection margins, which otherwise can result in additional surgeries or aggressive therapeutic regimens. To improve patient outcomes, intraoperative spectroscopic, fluorescence-based, structural, optoacoustic and radiological imaging techniques are being tested on freshly excised tissue. The specific clinical setting and tumour type largely determine whether endogenous or exogenous contrast is to be detected and whether the tumour specificity of the detected biomarker, image resolution, image-acquisition times or penetration depth are to be prioritized. In this Perspective, we describe current clinical standards for intraoperative tissue analysis and discuss how intraoperative imaging is being implemented. We also discuss potential implementations of intraoperative pathology-assisted surgery for clinical decision-making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Flowchart for IPAS.
Fig. 2: Flowchart for small-tissue analysis by IPAS.
Fig. 3: Flowchart for margin assessment by IPAS.

Similar content being viewed by others

References

  1. Orosco, R. K. et al. Positive surgical margins in the 10 most common solid cancers. Sci. Rep. 8, 56–86 (2018).

    Article  CAS  Google Scholar 

  2. Sutton, D. N., Brown, J. S., Rogers, S. N., Vaughan, E. D. & Woolgar, J. A. The prognostic implications of the surgical margin in oral squamous cell carcinoma. Int. J. Oral. Maxillofac. Surg. 32, 30–34 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Binahmed, A., Nason, R. W. & Abdoh, A. A. The clinical significance of the positive surgical margin in oral cancer. Oral Oncol. 43, 780–784 (2007).

    Article  PubMed  Google Scholar 

  4. Meric, F. et al. Positive surgical margins and ipsilateral breast tumour recurrence predict disease-specific survival after breast-conserving therapy. Cancer 97, 926–933 (2003).

    Article  PubMed  Google Scholar 

  5. Moran, M. S. et al. Society of Surgical Oncology–American Society for Radiation Oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer. Int. J. Radiat. Oncol. Biol. Phys. 88, 553–564 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Peeters, K. C. M. J. et al. The TME trial after a median follow-up of 6 years: increased local control but no survival benefit in irradiated patients with resectable rectal carcinoma. Ann. Surg. 246, 693–701 (2007).

    Article  PubMed  Google Scholar 

  7. Lin, H.-H. et al. Circumferential margin plays an independent impact on the outcome of rectal cancer patients receiving curative total mesorectal excision. Am. J. Surg. 206, 771–777 (2013).

    Article  PubMed  Google Scholar 

  8. Sasikumar, A., Bhan, C., Jenkins, J. T., Antoniou, A. & Murphy, J. Systematic review of pelvic exenteration with en bloc sacrectomy for recurrent rectal adenocarcinoma: R0 resection predicts disease-free survival. Dis. Colon Rectum 60, 346–352 (2017).

    Article  PubMed  Google Scholar 

  9. Crane, L. M. A. et al. Intraoperative imaging in ovarian cancer: fact or fiction? Mol. Imaging 10, 248–257 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Pop, C.-F. et al. Ex vivo indocyanine green fluorescence imaging for the detection of lymph node involvement in advanced-stage ovarian cancer. J. Surg. Oncol. 118, 1163–1169 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Chambers, K. J., Kraft, S. & Emerick, K. Evaluation of frozen section margins in high-risk cutaneous squamous cell carcinomas of the head and neck. Laryngoscope 125, 636–639 (2015).

    Article  PubMed  Google Scholar 

  12. Mahe, E. et al. Intraoperative pathology consultation: error, cause and impact. Can. J. Surg. 56, E13–E18 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Helliwell, T. R & Woolgar, J. A. Standards and Datasets for Reporting Cancers. Dataset for Histopathology Reporting of Mucosal Malignancies of the Oral Cavity (The Royal College of Pathologists, 2013).

  14. Woolgar, J. A. & Triantafyllou, A. A histopathological appraisal of surgical margins in oral and oropharyngeal cancer resection specimens. Oral Oncol. 41, 1034–1043 (2005).

    Article  PubMed  Google Scholar 

  15. van Dam, G. M. et al. Intraoperative tumour-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat. Med. 17, 1315–1319 (2011).

    Article  PubMed  CAS  Google Scholar 

  16. Vahrmeijer, A. L., Hutteman, M., van der Vorst, J. R., van de Velde, C. J. H. & Frangioni, J. V. Image-guided cancer surgery using near-infrared fluorescence. Nat. Rev. Clin. Oncol. 10, 507–518 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. de Boer, E. et al. In vivo fluorescence immunohistochemistry: localization of fluorescently labeled cetuximab in squamous cell carcinomas. Sci. Rep. 5, 14 (2015).

    Google Scholar 

  18. Harlaar, N. J. et al. Molecular fluorescence-guided surgery of peritoneal carcinomatosis of colorectal origin: a single-centre feasibility study. Lancet Gastroenterol. Hepatol. 1, 283–290 (2016).

    Article  PubMed  Google Scholar 

  19. Moore, L. S. et al. Effects of an unlabeled loading dose on tumour-specific uptake of a fluorescently labeled antibody for optical surgical navigation. Mol. Imaging Biol. 19, 610–616 (2016).

    Article  CAS  Google Scholar 

  20. Diot, G. et al. Multispectral optoacoustic tomography (MSOT) of human breast cancer. Clin. Cancer Res. 23, 6912–6922 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Koch, M., Symvoulidis, P. & Ntziachristos, V. Tackling standardization in fluorescence molecular imaging. Nat. Photon. 12, 505–515 (2018).

    Article  CAS  Google Scholar 

  22. Koch, M. & Ntziachristos, V. Advancing surgical vision with fluorescence imaging. Annu. Rev. Med. 67, 153–164 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Gorpas, D. et al. Multi-parametric standardization of fluorescence imaging systems based on a composite phantom. IEEE Trans. Biomed. Eng. 67, 185–192 (2020).

    Article  PubMed  Google Scholar 

  24. Weissleder, R. & Nahrendorf, M. Advancing biomedical imaging. Proc. Natl Acad. Sci. USA 112, 14424–14428 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Thakor, A. S. & Gambhir, S. S. Nanooncology: the future of cancer diagnosis and therapy. CA Cancer J. Clin. 63, 395–418 (2013).

    Article  PubMed  Google Scholar 

  26. Taruttis, A., van Dam, G. M. & Ntziachristos, V. Mesoscopic and macroscopic optoacoustic imaging of cancer. Cancer Res. 75, 1548–1559 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Omar, M., Aguirre, J. & Ntziachristos, V. Optoacoustic mesoscopy for biomedicine. Nat. Biomed. Eng. 3, 354–370 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Ntziachristos, V. Going deeper than microscopy: the optical imaging frontier in biology. Nat. Meth. 7, 603–614 (2010).

    Article  CAS  Google Scholar 

  29. Lauwerends, L. J. et al. Real-time fluorescence imaging in intraoperative decision making for cancer surgery. Lancet Oncol. 22, e186–e195 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Sloothaak, D. A. M. et al. Prognostic implications of occult nodal tumour cells in stage I and II colon cancer: the correlation between micrometastasis and disease recurrence. Eur. J. Surg. Oncol. 43, 1456–1462 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. de Boer, E. et al. Optical innovations in surgery. Br. J. Surg. 102, e56–e72 (2015).

    Article  PubMed  Google Scholar 

  32. Nagengast, W. B. et al. Near-infrared fluorescence molecular endoscopy detects dysplastic oesophageal lesions using topical and systemic tracer of vascular endothelial growth factor A. Gut 68, 7–10 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Stoffels, I. et al. Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging. Sci. Transl. Med. 7, 317ra199 (2015).

    Article  PubMed  CAS  Google Scholar 

  34. Ntziachristos, V., Pleitez, M. A., Aime, S. & Brindle, K. M. Emerging technologies to image tissue metabolism. Cell Metab. 29, 518–538 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Boezeman, R. P. E., Moll, F. L., Unlu, C. & de Vries, J.-P. P. M. Systematic review of clinical applications of monitoring muscle tissue oxygenation with near-infrared spectroscopy in vascular disease. Microvasc. Res. 104, 11–22 (2016).

    Article  PubMed  Google Scholar 

  36. Boamfa, M. I. et al. Combined transmission, dark field and fluorescence microscopy for intact, 3D tissue analysis of biopsies. J. Biomed. Opt. 25, 116503 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  37. Regensburger, A. P. et al. Detection of collagens by multispectral optoacoustic tomography as an imaging biomarker for Duchenne muscular dystrophy. Nat. Med. 25, 1905–1915 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Bourantas, C. V. et al. Hybrid intravascular imaging: recent advances, technical considerations, and current applications in the study of plaque pathophysiology. Eur. Heart J. 38, 400–412 (2017).

    Article  PubMed  Google Scholar 

  39. Weber, J., Beard, P. C. & Bohndiek, S. E. Contrast agents for molecular photoacoustic imaging. Nat. Meth. 13, 639–650 (2016).

    Article  CAS  Google Scholar 

  40. Fu, Q., Zhu, R., Song, J., Yang, H. & Chen, X. Photoacoustic Imaging: contrast agents and their biomedical applications. Adv. Mater. 31, e1805875 (2019).

    PubMed  Google Scholar 

  41. Bremer, C., Ntziachristos, V. & Weissleder, R. Optical-based molecular imaging: contrast agents and potential medical applications. Eur. Radiol. 13, 231–243 (2003).

    Article  PubMed  Google Scholar 

  42. Burggraaf, J. et al. Detection of colorectal polyps in humans using an intravenously administered fluorescent peptide targeted against c-Met. Nat. Med. 21, 955–961 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Allegra, A. et al. Nanobodies and cancer: current status and new perspectives. Cancer Invest. 36, 221–237 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Wei, Y. et al. Biocompatible low-retention superparamagnetic iron oxide nanoclusters as contrast agents for magnetic resonance imaging of liver tumour. J. Biomed. Nanotechnol. 11, 854–864 (2015).

    Article  PubMed  CAS  Google Scholar 

  45. Zhao, T. et al. A transistor-like pH nanoprobe for tumour detection and image-guided surgery. Nat. Biomed. Eng. 1, 0006 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Liu, Q. Role of optical spectroscopy using endogenous contrasts in clinical cancer diagnosis. World J. Clin. Oncol. 2, 50–63 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Goetz, A. F. H. Three decades of hyperspectral remote sensing of the Earth: a personal view. Remote Sens. Environ. 113, s1–s16 (2009).

    Article  Google Scholar 

  48. Lu, G. & Fei, B. Medical hyperspectral imaging: a review. J. Biomed. Opt. 19, 10901 (2014).

    Article  PubMed  CAS  Google Scholar 

  49. Boas, D. A, Pitris, C & Ramanujam, N. Handbook of Biomedical Optics (CRC Press, 2011).

  50. Fei, B. et al. Label-free reflectance hyperspectral imaging for tumour margin assessment: a pilot study on surgical specimens of cancer patients. J. Biomed. Opt. 22, 1–7 (2017).

    Article  PubMed  Google Scholar 

  51. Fei, B. et al. Label-free hyperspectral imaging and quantification methods for surgical margin assessment of tissue specimens of cancer patients. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2017, 4041–4045 (2017).

    PubMed  Google Scholar 

  52. Fei, B. et al. Tumour margin assessment of surgical tissue specimen of cancer patients using label-free hyperspectral imaging. Proc. SPIE Int. Soc. Opt. Eng. 10054, 100540E (2017).

    PubMed  PubMed Central  Google Scholar 

  53. Halicek, et al.Tumour margin classification of head and neck cancer using hyperspectral imaging and convolutional neural networks. Proc. SPIE Int. Soc. Opt. Eng. 10576, 1057605 (2018).

    PubMed  PubMed Central  Google Scholar 

  54. Lu, G. et al. Detection of head and neck cancer in surgical specimens using quantitative hyperspectral imaging. Clin. Cancer Res. 23, 5426–5436 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Baltussen, E. J. M. et al. Hyperspectral imaging for tissue classification, a way toward smart laparoscopic colorectal surgery. J. Biomed. Opt. 24, 1–9 (2019).

    Article  PubMed  Google Scholar 

  56. Brouwer de Koning, S. G. et al. Toward assessment of resection margins using hyperspectral diffuse reflection imaging (400–1,700 nm) during tongue cancer surgery. Lasers Surg. Med. 52, 496–502 (2020).

    Article  PubMed  Google Scholar 

  57. Kho, E. et al. Imaging depth variations in hyperspectral imaging: development of a method to detect tumour up to the required tumour-free margin width. J. Biophotonics 12, e201900086 (2019).

    Article  PubMed  Google Scholar 

  58. Kho, E. et al. Hyperspectral imaging for resection margin assessment during cancer surgery. Clin. Cancer Res. 25, 3572–3580 (2019).

    Article  PubMed  Google Scholar 

  59. Long, D. A. Raman Spectroscopy (McGraw-Hill, 1977).

  60. Barroso, E. M. et al. Raman spectroscopy for assessment of bone resection margins in mandibulectomy for oral cavity squamous cell carcinoma. Eur. J. Cancer 92, 77–87 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Barroso, E. M. et al. Water concentration analysis by Raman spectroscopy to determine the location of the tumour border in oral cancer surgery. Cancer Res. 76, 5945–5953 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Cals, F. L. J. et al. Development and validation of Raman spectroscopic classification models to discriminate tongue squamous cell carcinoma from non-tumourous tissue. Oral Oncol. 60, 41–47 (2016).

    Article  PubMed  Google Scholar 

  63. Nguyen, J. Q. et al. Intraoperative Raman spectroscopy of soft tissue sarcomas. Lasers Surg. Med. 48, 774–781 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Camp, C. H. J. et al. High-speed coherent Raman fingerprint imaging of biological tissues. Nat. Photonics 8, 627–634 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Byrne, H. J. et al. Spectropathology for the next generation: quo vadis? Analyst 140, 2066–2073 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Evans, C. L. et al. Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. Proc. Natl Acad. Sci. USA 102, 16807–16812 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Saar, B. G. et al. Video-rate molecular imaging in vivo with stimulated Raman scattering. Science 330, 1368–1370 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hollon, T. C. et al. Near real-time intraoperative brain tumour diagnosis using stimulated Raman histology and deep neural networks. Nat. Med. 26, 52–58 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Freudiger, C. W. et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322, 1857–1861 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ji, M. et al. Detection of human brain tumour infiltration with quantitative stimulated Raman scattering microscopy. Sci. Transl. Med. 7, 309ra163 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Orringer, D. A. et al. Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy. Nat. Biomed. Eng. 1, 0027 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Harmsen, S. et al. Detection of premalignant gastrointestinal lesions using surface-enhanced resonance raman scattering-nanoparticle endoscopy. ACS Nano 13, 1354–1364 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Davis, R. M. et al. Surface-enhanced Raman scattering nanoparticles for multiplexed imaging of bladder cancer tissue permeability and molecular phenotype. ACS Nano 12, 9669–9679 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Arami, H. et al. Nanomedicine for spontaneous brain tumours: a companion clinical trial. ACS Nano 13, 2858–2869 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Meng, Z., Petrov, G. I. & Yakovlev, V. V. Continuous-wave stimulated Raman scattering (cwSRS) microscopy. Appl. Phys. B 112, 99–103 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pleitez, M. A. et al. Label-free metabolic imaging by mid-infrared optoacoustic microscopy in living cells. Nat. Biotechnol. 38, 293–296 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Strack, R. Mid-IR optoacoustic microscopy. Nat. Meth. 17, 251 (2020).

    Article  CAS  Google Scholar 

  78. Weissleder, R. & Pittet, M. J. Imaging in the era of molecular oncology. Nature 452, 580–589 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Weissleder, R. & Ntziachristos, V. Shedding light onto live molecular targets. Nat. Med. 9, 123–128 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nat. Meth. 2, 932–940 (2005).

    Article  CAS  Google Scholar 

  81. Gareau, D. S. Feasibility of digitally stained multimodal confocal mosaics to simulate histopathology. J. Biomed. Opt. 14, 034050 (2009).

    Article  PubMed  Google Scholar 

  82. Hallani, El,S. et al. Ex vivo confocal imaging with contrast agents for the detection of oral potentially malignant lesions. Oral Oncol. 49, 582–590 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Ragazzi, M. et al. Fluorescence confocal microscopy for pathologists. Mod. Pathol. 27, 460–471 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Abeytunge, S. et al. Evaluation of breast tissue with confocal strip-mosaicking microscopy: a test approach emulating pathology-like examination. J. Biomed. Opt. 22, 34002 (2017).

    Article  PubMed  Google Scholar 

  85. Schueder, F. et al. Multiplexed 3D super-resolution imaging of whole cells using spinning disk confocal microscopy and DNA-PAINT. Nat. Commun. 8, 2090 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. van Royen, M. E. et al. Three-dimensional microscopic analysis of clinical prostate specimens. Histopathology 69, 985–992 (2016).

    Article  PubMed  Google Scholar 

  87. Gareau, D. S., Jeon, H., Nehal, K. S. & Rajadhyaksha, M. Rapid screening of cancer margins in tissue with multimodal confocal microscopy. J. Surg. Res. 178, 533–538 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Peters, N., Schubert, M., Metzler, G., Geppert, J.-P. & Moehrle, M. Diagnostic accuracy of a new ex vivo confocal laser scanning microscope compared to H&E-stained paraffin slides for micrographic surgery of basal cell carcinoma. J. Eur. Acad. Dermatol. Venereol. 33, 298–304 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Bini, J. et al. Confocal mosaicing microscopy of human skin ex vivo: spectral analysis for digital staining to simulate histology-like appearance. J. Biomed. Opt. 16, 076008 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    Article  CAS  PubMed  Google Scholar 

  91. Yan, J. et al. Real-time optical diagnosis for surgical margin in low rectal cancer using multiphoton microscopy. Surg. Endosc. 28, 36–41 (2014).

    Article  PubMed  Google Scholar 

  92. Cahill, L. C. et al. Rapid virtual hematoxylin and eosin histology of breast tissue specimens using a compact fluorescence nonlinear microscope. Lab Invest. 98, 150–160 (2018).

    Article  CAS  PubMed  Google Scholar 

  93. Schmidt-Erfurth, U., Klimscha, S., Waldstein, S. M. & Bogunovic, H. A view of the current and future role of optical coherence tomography in the management of age-related macular degeneration. Eye (Lond.) 31, 26–44 (2017).

    Article  CAS  Google Scholar 

  94. Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J. & Stelzer, E. H. K. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305, 1007–1009 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Chung, K. et al. Structural and molecular interrogation of intact biological systems. Nature 497, 332–337 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Erturk, A. et al. Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat. Protoc. 7, 1983–1995 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Glaser, A. K. et al. Light-sheet microscopy for slide-free non-destructive pathology of large clinical specimens. Nat. Biomed. Eng. 1, 0084 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Tanaka, N. et al. Whole-tissue biopsy phenotyping of three-dimensional tumours reveals patterns of cancer heterogeneity. Nat. Biomed. Eng. 1, 796–806 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Villani, T. S., Koroch, A. R. & Simon, J. E. An improved clearing and mounting solution to replace chloral hydrate in microscopic applications. Appl. Plant Sci. 1, 1300016 (2013).

    Article  Google Scholar 

  100. Reder, N. P. et al. Open-top light-sheet microscopy image atlas of prostate core needle biopsies. Arch. Pathol. Lab. Med. 143, 1069–1075 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Chen, Y. et al. Rapid pathology of lumpectomy margins with open-top light-sheet (OTLS) microscopy. Biomed. Opt. Express 10, 1257–1272 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Neill, M. A. A., Juskaitis, R. & Wilson, T. Method of obtaining optical sectioning by using structured light in a conventional microscope. Opt. Lett. 22, 1905–1907 (1997).

    Article  Google Scholar 

  103. Mertz, J. Optical sectioning microscopy with planar or structured illumination. Nat. Meth. 8, 811–819 (2011).

    Article  CAS  Google Scholar 

  104. Wu, Y. & Shroff, H. Faster, sharper, and deeper: structured illumination microscopy for biological imaging. Nat. Meth. 15, 1011–1019 (2018).

    Article  CAS  Google Scholar 

  105. Wang, M. et al. Gigapixel surface imaging of radical prostatectomy specimens for comprehensive detection of cancer-positive surgical margins using structured illumination microscopy. Sci. Rep. 6, 27419 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Schlichenmeyer, T. C., Wang, M., Elfer, K. N. & Brown, J. Q. Video-rate structured illumination microscopy for high-throughput imaging of large tissue areas. Biomed. Opt. Express 5, 366–12 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Fereidouni, F. et al. Microscopy with ultraviolet surface excitation for rapid slide-free histology. Nat. Biomed. Eng. 1, 957–966 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. An, J.-P. et al. R2R3-MYB transcription factor MdMYB23 is involved in the cold tolerance and proanthocyanidin accumulation in apple. Plant J. 96, 562–577 (2018).

    Article  CAS  PubMed  Google Scholar 

  109. Xie, W. et al. Microscopy with ultraviolet surface excitation for wide-area pathology of breast surgical margins. J. Biomed. Opt. 24, 1–11 (2019).

    Article  PubMed  Google Scholar 

  110. Moore, G. E. Fluorescein as an agent in the differentiation of normal and malignant tissues. Science 106, 130–131 (1947).

    Article  CAS  PubMed  Google Scholar 

  111. Stummer, W. et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 7, 392–401 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Koller, M. et al. Implementation and benchmarking of a novel analytical framework to clinically evaluate tumour-specific fluorescent tracers. Nat. Commun. 9, 37–39 (2018).

    Article  CAS  Google Scholar 

  113. de Jongh, S. J. et al. Back-table fluorescence-guided imaging for circumferential resection margin evaluation using bevacizumab-800CW in patients with locally advanced rectal cancer. J. Nucl. Med. 61, 655–661 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Rosenthal, E. L. et al. Safety and tumour specificity of cetuximab-IRDye800 for surgical navigation in head and neck cancer. Clin. Cancer Res. 21, 3658–3666 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Voskuil, F. J. et al. Fluorescence-guided imaging for resection margin evaluation in head and neck cancer patients using cetuximab-800CW: a quantitative dose-escalation study. Theranostics 10, 3994–4005 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kossatz, S. et al. Validation of the use of a fluorescent PARP1 inhibitor for the detection of oral, oropharyngeal and oesophageal epithelial cancers. Nat. Biomed. Eng. 4, 272–285 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. van Keulen, S. et al. Rapid, non-invasive fluorescence margin assessment: optical specimen mapping in oral squamous cell carcinoma. Oral Oncol. 88, 58–65 (2019).

    Article  PubMed  Google Scholar 

  118. Huang, D. et al. Optical coherence tomography. Science 254, 1178–1181 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sainter, A. W., King, T. A. & Dickinson, M. R. Effect of target biological tissue and choice of light source on penetration depth and resolution in optical coherence tomography. J. Biomed. Opt. 9, 193–199 (2004).

    Article  PubMed  Google Scholar 

  120. Zysk, A. M. et al. Intraoperative assessment of final margins with a handheld optical imaging probe during breast-conserving surgery may reduce the reoperation rate: results of a multicenter study. Ann. Surg. Oncol. 22, 3356–3362 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Nguyen, F. T. et al. Intraoperative evaluation of breast tumour margins with optical coherence tomography. Cancer Res. 69, 8790–8796 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Erickson-Bhatt, S. J. et al. Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery. Cancer Res. 75, 3706–3712 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ludwig, W. W. et al. Margin assessment in renal surgery using a handheld optical coherence tomography probe. Urology 113, 241–245 (2018).

    Article  PubMed  Google Scholar 

  124. Hamdoon, Z., Jerjes, W., McKenzie, G., Jay, A. & Hopper, C. Optical coherence tomography in the assessment of oral squamous cell carcinoma resection margins. Photodiagnosis Photodyn. Ther. 13, 211–217 (2016).

    Article  PubMed  Google Scholar 

  125. Rashed, D. et al. Rapid ex vivo examination of Mohs specimens using optical coherence tomography. Photodiagnosis Photodyn. Ther. 19, 243–248 (2017).

    Article  CAS  PubMed  Google Scholar 

  126. Popescu, D. P. et al. Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications. Biophys. Rev. 3, 155 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Mertz, J. Nonlinear microscopy: new techniques and applications. Curr. Opin. Neurobiol. 14, 610–616 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Kuzmin, N. V. et al. Third harmonic generation imaging for fast, label-free pathology of human brain tumours. Biomed. Opt. Express 7, 1889–1904 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. van Huizen, L. M. G. et al. Second and third harmonic generation microscopy visualizes key structural components in fresh unprocessed healthy human breast tissue. J. Biophotonics 7, e201800297 (2019).

    Google Scholar 

  130. Duck, F. A. Physical Properties Of Tissue: A Comprehensive Reference Book (Academic Press, 1990).

  131. Wang, L. V. & Hu, S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335, 1458–1462 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Taruttis, A. & Ntziachristos, V. Advances in real-time multispectral optoacoustic imaging and its applications. Nat. Photon. 9, 219–227 (2015).

    Article  CAS  Google Scholar 

  133. Ntziachristos, V., Ripoll, J., Wang, L. V. & Weissleder, R. Looking and listening to light: the evolution of whole-body photonic imaging. Nat. Biotechnol. 23, 313–320 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Dima, A. & Ntziachristos, V. In-vivo handheld optoacoustic tomography of the human thyroid. Photoacoustics 4, 65–69 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Lin, L. et al. Single-breath-hold photoacoustic computed tomography of the breast. Nat. Commun. 9, 2352 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Zhou, Y. et al. Noninvasive determination of melanoma depth using a handheld photoacoustic probe. J. Invest. Dermatol. 137, 1370–1372 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kim, J. et al. Multispectral ex vivo photoacoustic imaging of cutaneous melanoma for better selection of the excision margin. Br. J. Dermatol. 179, 780–782 (2018).

    Article  CAS  PubMed  Google Scholar 

  138. Chen, Z., Dean-Ben, X. L., Gottschalk, S. & Razansky, D. Performance of optoacoustic and fluorescence imaging in detecting deep-seated fluorescent agents. Biomed. Opt. Express 9, 2229–2239 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Laramie, M. D., Smith, M. K., Marmarchi, F., McNally, L. R. & Henary, M. Small molecule optoacoustic contrast agents: an unexplored avenue for enhancing in vivo imaging. Molecules 23, 2766 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  140. Tang, R. et al. A pilot study evaluating shaved cavity margins with micro-computed tomography: a novel method for predicting lumpectomy margin status intraoperatively. Breast J. 347, 485–489 (2013).

    Google Scholar 

  141. McClatchy, D. M. III, Zuurbier, R. A., Wells, W. A., Paulsen, K. D. & Pogue, B. W. Micro-computed tomography enables rapid surgical margin assessment during breast conserving surgery (BCS): correlation of whole BCS micro-CT readings to final histopathology. Breast Cancer Res. Treat. 172, 587–595 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Zhang, X. et al. Effects of hydrogen bond acceptor ability of solvents on molecular self-assembly of sulfadiazine solvates. J. Pharm. Sci. 107, 2823–2828 (2018).

    Article  CAS  PubMed  Google Scholar 

  143. Qiu, S.-Q. et al. Micro-computed tomography (micro-CT) for intraoperative surgical margin assessment of breast cancer: a feasibility study in breast conserving surgery. Eur. J. Surg. Oncol. 44, 1708–1713 (2018).

    Article  PubMed  Google Scholar 

  144. Heidkamp, J. et al. Ex vivo MRI evaluation of prostate cancer: localization and margin status prediction of prostate cancer in fresh radical prostatectomy specimens. J. Magn. Reson. Imaging 47, 439–448 (2018).

    Article  PubMed  Google Scholar 

  145. Heidkamp, J. et al. MRI evaluation of vulvar squamous-cell carcinoma in fresh radical local excision specimens for cancer localization and prediction of surgical tumour-free margins. NMR Biomed. 32, e4025 (2019).

    Article  PubMed  Google Scholar 

  146. Dashevsky, B. Z. et al. The potential of high resolution magnetic resonance microscopy in the pathologic analysis of resected breast and lymph tissue. Sci. Rep. 5, 17435 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Steens, S. C. A. et al. Evaluation of tongue squamous cell carcinoma resection margins using ex-vivo MR. Int. J. Comput. Assist Radiol. Surg. 12, 821–828 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  148. van Oostenbrugge, T. J. et al. MRI as a tool to assess surgical margins and pseudocapsule features directly following partial nephrectomy for small renal masses. Eur. Radiol. 29, 509–516 (2019).

    Article  PubMed  Google Scholar 

  149. Veeratterapillay, R. et al. Intraoperative and surgical specimen (ex vivo) ultrasound in the assessment of margins at partial nephrectomy. Int. Urol. Nephrol. 47, 1665–1669 (2015).

    Article  CAS  PubMed  Google Scholar 

  150. Yamamoto, H. et al. Micrometastasis volume in lymph nodes determines disease recurrence rate of stage ii colorectal cancer: a prospective multicenter trial. Clin. Cancer Res. 22, 3201–3208 (2016).

    Article  CAS  PubMed  Google Scholar 

  151. Ho, A. S. et al. Metastatic lymph node burden and survival in oral cavity cancer. J. Clin. Oncol. 35, 3601–3609 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Toom, Den, I. J. et al. Sentinel node biopsy for early-stage oral cavity cancer: the VU University Medical Center experience. Head Neck 37, 573–578 (2015).

    Article  Google Scholar 

  153. Ferrer, R. Lymphadenopathy: differential diagnosis and evaluation. Am. Fam. Physician 58, 1313–1320 (1998).

    CAS  PubMed  Google Scholar 

  154. Liu, M., Wang, S. J., Yang, X. & Peng, H. Diagnostic efficacy of sentinel lymph node biopsy in early oral squamous cell carcinoma: a meta-analysis of 66 studies. PLoS ONE 12, e0170322 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Donker, M. et al. Breast-conserving treatment with or without radiotherapy in ductal carcinoma in situ: 15-year recurrence rates and outcome after a recurrence, from the EORTC 10853 randomized phase III trial. J. Clin. Oncol. 31, 4054–4059 (2013).

    Article  PubMed  Google Scholar 

  156. Marinovich, M. L. et al. The association of surgical margins and local recurrence in women with ductal carcinoma in situ treated with breast-conserving therapy: a meta-analysis. Ann. Surg. Oncol. 23, 3811–3821 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Servoll, E. et al. The length of a positive surgical margin is of prognostic significance in patients with clinically localized prostate cancer treated with radical prostatectomy. Urol. Int. 93, 289–295 (2014).

    Article  PubMed  Google Scholar 

  158. Hinni, M. L. et al. Surgical margins in head and neck cancer: a contemporary review. Head Neck 35, 1362–1370 (2013).

    Article  PubMed  Google Scholar 

  159. Buchakjian, M. R., Tasche, K. K., Robinson, R. A., Pagedar, N. A. & Sperry, S. M. Association of main specimen and tumour bed margin status with local recurrence and survival in oral cancer surgery. JAMA Otolaryngol. Head. Neck Surg. 142, 1191–1198 (2016).

    Article  PubMed  Google Scholar 

  160. NCCN Guidelines: Treatment by Cancer Type (National Comprehensive Cancer Network, 2019); https://www.nccn.org/guidelines/category_1

  161. Gao, R. W. et al. Determination of tumour margins with surgical specimen mapping using near-Infrared fluorescence. Cancer Res. 78, 5144–5154 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Wong, L. S. et al. Influence of close resection margins on local recurrence and disease-specific survival in oral and oropharyngeal carcinoma. Br. J. Oral Maxillofac. Surg. 50, 102–108 (2012).

    Article  PubMed  Google Scholar 

  163. Gephardt, G. N. & Zarbo, R. J. Interinstitutional comparison of frozen section consultations. A college of American Pathologists Q-Probes study of 90,538 cases in 461 institutions. Arch. Pathol. Lab. Med. 120, 804–809 (1996).

    CAS  PubMed  Google Scholar 

  164. Mapstone, N. P. Dataset for the Histopathological Reporting of Oesophageal Carcinoma (2nd edition) (The Royal College of Pathologists, 2007).

  165. Shi, C. Protocol for the Examination of Specimens from Patients with Carcinoma of the Esophagus (College of American Pathologists, 2017).

  166. Kench, J. G. et al. Dataset for the reporting of prostate carcinoma in radical prostatectomy specimens: updated recommendations from the International Collaboration on Cancer Reporting. Virchows Arch. 475, 263–277 (2019).

    Article  PubMed  Google Scholar 

  167. Faruqi, A. & Rous, B. Standards and Datasets for Reporting Cancers. Dataset for Histopathological Reporting of Vulval Carcinomas (The Royal College of Pathologists, 2018).

  168. Slater, D. & Cook, M. Standards and Datasets for Reporting Cancers. Dataset for Histopathological Reporting of Primary Cutaneous Malignant Melanoma and Regional Lymph Nodes (The royal college of pathologists, 1–49 (2019).

  169. Fisher, C. Standards and Datasets for Reporting Cancers. Dataset for Histopathological Reporting of Soft Tissue Sarcomas (The Royal College of Pathologists, 2018).

  170. Wharton, S. B. et al. Standards and Datasets for Reporting Cancers. Dataset for Tumours of the Central Nervous System, Including the Pituitary Gland (The Royal College of Pathologists, 2016).

  171. Nicholson, A. G., Kerr, K. & Grosney, J. Standards and Datasets for Reporting Cancers. Dataset for Histopathological Reporting of Lung Cancer (The Royal College of Ppathologists, 2018).

  172. Campbell, F., Cairns, A., Duthie, F. & Freakins, R. Dataset for the Histopathological Reporting of Carcinomas of the Pancreas, Ampulla of Vater and Common Bile Duct (The Royal College of Pathologists, 2017).

  173. Ellis, I. O. et al. Pathology Reporting of Breast Disease in Surgical Excision Specimens Incorporating the Dataset for Histological Reporting of Breast Cancer (The Royal College of Pathologists, 2016).

  174. Loughrey, M. B., Quirke, P. & Shepherd, N. A. Standards and Datasets for Reporting Cancers. Dataset for Histopathological Reporting of Colorectal Cancer (The Royal College of Pathologists, 2018).

  175. McCluggage, W. G. et al. Data set for the reporting of carcinomas of the cervix: recommendations from the International Collaboration on Cancer Reporting (ICCR). Int. J. Gynecol. Pathol. 37, 205–228 (2018).

    Article  PubMed  Google Scholar 

  176. Jones, K. D. et al. Data set for reporting of lung carcinomas: recommendations from International Collaboration on Cancer Reporting. Arch. Pathol. Lab. Med. 137, 1054–1062 (2013).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G.W.’t Hooft (Philips Research) and M. Pleitez (Helmholtz Zentrum Munich) for useful discussions on nonlinear imaging techniques and Raman imaging, respectively. V.N. received funding from the EU grants SENSITIVE, funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 801347, and ESCEND, funded by the Bundesministerium für Bildung und Forschung, Bonn, Germany (01KT1809) under the EU framework programme Horizon 2020 (TRANSCAN-2; grant agreement no. 643638).

Author information

Authors and Affiliations

Authors

Contributions

F.J.V., J.V., M.J.H.W. and G.M.v.D. designed the study. F.J.V. and J.V. performed literature research and drafted the manuscript. P.J.v.d.Z. and V.N. provided technical input on imaging techniques. B.v.d.V. and S.K. provided input on clinical implementation. P.J.v.d.Z., M.J.H.W. and G.M.v.D. supervised the study and the writing of the manuscript. All authors contributed to revising the manuscript.

Corresponding author

Correspondence to Gooitzen M. van Dam.

Ethics declarations

Competing interests

B.v.d.V. is a member of the Scientific Advisory Board of Visiopharm, for which compensation is received by the University Medical Center Groningen. V.N. is an equity owner and consultant of iThera Medical GmbH, an owner of Spear UG and a member of the Scientific Advisory Board of SurgVision B.V./Bracco Sp.A. P.J.v.d.Z. is an employee of Philips Research, The Netherlands. G.M.v.D. is CEO, founder and shareholder of TRACER Europe BV/AxelaRx. The other authors declare no competing interests.

Additional information

Peer review information Nature Biomedical Engineering thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voskuil, F.J., Vonk, J., van der Vegt, B. et al. Intraoperative imaging in pathology-assisted surgery. Nat. Biomed. Eng 6, 503–514 (2022). https://doi.org/10.1038/s41551-021-00808-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-021-00808-8

  • Springer Nature Limited

This article is cited by

Navigation