Skip to main content

Advertisement

Log in

Effects of an Unlabeled Loading Dose on Tumor-Specific Uptake of a Fluorescently Labeled Antibody for Optical Surgical Navigation

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Intraoperative optical imaging to guide surgeons during oncologic resections offers a unique and promising solution to the ambiguity of cancer margins to tactile and visual assessment that results in devastatingly high rates of positive margins. Sequestering of labeled antibodies by normal tissues with high expression of the antibody target, or “antigen sinks”, diminishes the efficacy of these probes to provide contrast between the tumor and background tissues by decreasing the amount of circulating probe available for uptake by the tumor and by increasing the fluorescence of non-tumor tissues. We hypothesized that administering a dose of unlabeled antibody prior to infusion of the near-infrared (NIR) fluorescently labeled antibody would improve tumor-specific uptake and contrast of the fluorescently labeled probe by occupying extra-tumoral binding sites, thereby increasing the amount of labeled probe available for uptake by the tumor.

Procedures

In this study, we explore this concept by testing two different “pre-load” doses of unlabeled cetuximab (the standard 10-mg test dose, and a larger, experimental 100-mg test dose) in six patients receiving cetuximab conjugated to the fluorescent dye IRDye800CW (cetuximab-IRDye800CW) in a clinical trial, and compared the amount of fluorescent antibody in tumor and background tissues, as well as the tumor-specific contrast of each.

Results

The patients receiving the larger preload (100 mg) of unlabeled cetuximab demonstrated significantly higher concentrations (9.5 vs. 0.1 μg) and a longer half-life (30.3 vs. 20.6 days) of the labeled cetuximab in plasma, as well as significantly greater tumor fluorescence (32.3 vs. 9.3 relative fluorescence units) and tumor to background ratios (TBRs) (5.5 vs. 1.7).

Conclusions

Administering a preload of unlabeled antibody prior to infusion of the fluorescently labeled drug may be a simple and effective way to improve the performance of antibody-based probes to guide surgical resection of solid malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Woolgar JA, Triantafyllou A (2005) A histopathological appraisal of surgical margins in oral and oropharyngeal cancer resection specimens. Oral Oncol 41:1034–1043

    Article  PubMed  Google Scholar 

  2. McMahon J, O’Brien CJ, Pathak I et al (2003) Influence of condition of surgical margins on local recurrence and disease-specific survival in oral and oropharyngeal cancer. Br J Oral Maxillofac Surg 41:224–231

    Article  CAS  PubMed  Google Scholar 

  3. Hinni ML, Ferlito A, Brandwein-Gensler MS et al (2013) Surgical margins in head and neck cancer: a contemporary review. Head Neck 35:1362–1370

    Article  PubMed  Google Scholar 

  4. Stummer W, Novotny A, Stepp H et al (2000) Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg 93:1003–1013

    Article  CAS  PubMed  Google Scholar 

  5. Stummer W, Pichlmeier U, Meinel T et al (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7:392–401

    Article  CAS  PubMed  Google Scholar 

  6. Rosenthal EL, Warram JM, de Boer E et al (2016) Successful translation of fluorescence navigation during oncologic surgery: a consensus report. J Nucl Med 57:144–150

    Article  PubMed  Google Scholar 

  7. Koch M, Ntziachristos V (2016) Advancing surgical vision with fluorescence imaging. Annu Rev Med 67:153–164

    Article  CAS  PubMed  Google Scholar 

  8. Rosenthal EL, Warram JM, de Boer E et al (2015) Safety and tumor specificity of cetuximab-IRDye800 for surgical navigation in head and neck cancer. Clin Cancer Res 21:3658–3666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Whitley MJ, Cardona DM, Lazarides AL et al (2016) A mouse-human phase 1 co-clinical trial of a protease-activated fluorescent probe for imaging cancer. Sci Transl Med 8:320ra324

    Article  Google Scholar 

  10. Day KE, Sweeny L, Kulbersh B et al (2013) Preclinical comparison of near-infrared-labeled cetuximab and panitumumab for optical imaging of head and neck squamous cell carcinoma. Mol Imaging Biol 15:722–729

    Article  PubMed  PubMed Central  Google Scholar 

  11. Korb ML, Hartman YE, Kovar J et al (2014) Use of monoclonal antibody-IRDye800CW bioconjugates in the resection of breast cancer. J Surg Res 188:119–128

    Article  CAS  PubMed  Google Scholar 

  12. Day KE, Beck LN, Deep NL et al (2013) Fluorescently labeled therapeutic antibodies for detection of microscopic melanoma. Laryngoscope 123:2681–2689

    Article  CAS  PubMed  Google Scholar 

  13. Kulbersh BD, Duncan RD, Magnuson JS et al (2007) Sensitivity and specificity of fluorescent immunoguided neoplasm detection in head and neck cancer xenografts. Arch Otolaryngol Head Neck Surg 133:511–515

    Article  PubMed  Google Scholar 

  14. Rosenthal EL, Kulbersh BD, Duncan RD et al (2006) In vivo detection of head and neck cancer orthotopic xenografts by immunofluorescence. Laryngoscope 116:1636–1641

    Article  PubMed  Google Scholar 

  15. Tanaka E, Choi HS, Humblet V et al (2008) Real-time intraoperative assessment of the extrahepatic bile ducts in rats and pigs using invisible near-infrared fluorescent light. Surgery 144:39–48

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tanaka E, Ohnishi S, Laurence RG et al (2007) Real-time intraoperative ureteral guidance using invisible near-infrared fluorescence. J Urol 178:2197–2202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. van der Vorst JR, Schaafsma BE, Verbeek FP et al (2013) Near-infrared fluorescence sentinel lymph node mapping of the oral cavity in head and neck cancer patients. Oral Oncol 49:15–19

    Article  PubMed  Google Scholar 

  18. Hutteman M, Choi HS, Mieog JS et al (2011) Clinical translation of ex vivo sentinel lymph node mapping for colorectal cancer using invisible near-infrared fluorescence light. Ann Surg Oncol 18:1006–1014

    Article  PubMed  Google Scholar 

  19. Tjalma JJ, Garcia-Allende PB, Hartmans E et al (2016) Molecular fluorescence endoscopy targeting vascular endothelial growth factor A for improved colorectal polyp detection. J Nucl Med 57:480–485

    Article  PubMed  Google Scholar 

  20. Terwisscha van Scheltinga AG, van Dam GM, Nagengast WB et al (2011) Intraoperative near-infrared fluorescence tumor imaging with vascular endothelial growth factor and human epidermal growth factor receptor 2 targeting antibodies. J Nucl Med 52:1778–1785

    Article  CAS  PubMed  Google Scholar 

  21. Wu J, Ma R, Cao H et al (2013) Intraoperative imaging of metastatic lymph nodes using a fluorophore-conjugated antibody in a HER2/neu-expressing orthotopic breast cancer mouse model. Anticancer Res 33:419–424

    PubMed  Google Scholar 

  22. Metildi CA, Kaushal S, Pu M et al (2014) Fluorescence-guided surgery with a fluorophore-conjugated antibody to carcinoembryonic antigen (CEA), that highlights the tumor, improves surgical resection and increases survival in orthotopic mouse models of human pancreatic cancer. Ann Surg Oncol 21:1405–1411

    Article  PubMed  PubMed Central  Google Scholar 

  23. McElroy M, Kaushal S, Luiken GA et al (2008) Imaging of primary and metastatic pancreatic cancer using a fluorophore-conjugated anti-CA19-9 antibody for surgical navigation. World J Surg 32:1057–1066

    Article  PubMed  PubMed Central  Google Scholar 

  24. Metildi CA, Tang CM, Kaushal S et al (2013) In vivo fluorescence imaging of gastrointestinal stromal tumors using fluorophore-conjugated anti-KIT antibody. Ann Surg Oncol 20(Suppl 3):S693–S700

    Article  PubMed  PubMed Central  Google Scholar 

  25. Keizer RJ, Huitema AD, Schellens JH, Beijnen JH (2010) Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet 49:493–507

    Article  CAS  PubMed  Google Scholar 

  26. Wang W, Wang EQ, Balthasar JP (2008) Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther 84:548–558

    Article  CAS  PubMed  Google Scholar 

  27. Mould DR, Green B (2010) Pharmacokinetics and pharmacodynamics of monoclonal antibodies: concepts and lessons for drug development. BioDrugs 24:23–39

    Article  CAS  PubMed  Google Scholar 

  28. Dostalek M, Gardner I, Gurbaxani BM et al (2013) Pharmacokinetics, pharmacodynamics and physiologically-based pharmacokinetic modelling of monoclonal antibodies. Clin Pharmacokinet 52:83–124

    Article  CAS  PubMed  Google Scholar 

  29. Greish K (2007) Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines. J Drug Target 15:457–464

    Article  CAS  PubMed  Google Scholar 

  30. Greish K (2010) Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol Biol 624:25–37

    Article  CAS  PubMed  Google Scholar 

  31. Mould DR, Sweeney KR (2007) The pharmacokinetics and pharmacodynamics of monoclonal antibodies—mechanistic modeling applied to drug development. Curr Opin Drug Discov Devel 10:84–96

    CAS  PubMed  Google Scholar 

  32. Owens EA, Lee S, Choi J, Henary M, Choi HS (2015) NIR fluorescent small molecules for intraoperative imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7:828–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vira S, Mekhedov E, Humphrey G, Blank PS (2010) Fluorescent-labeled antibodies: balancing functionality and degree of labeling. Anal Biochem 402:146–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. McCombs JR, Owen SC (2015) Antibody drug conjugates: design and selection of linker, payload and conjugation chemistry. AAPS J 17:339–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lammerts van Bueren JJ, Bleeker WK, Bogh HO et al (2006) Effect of target dynamics on pharmacokinetics of a novel therapeutic antibody against the epidermal growth factor receptor: implications for the mechanisms of action. Cancer Res 66:7630–7638

    Article  CAS  PubMed  Google Scholar 

  36. Ternant D, Bejan-Angoulvant T, Passot C et al (2015) Clinical pharmacokinetics and pharmacodynamics of monoclonal antibodies approved to treat rheumatoid arthritis. Clin Pharmacokinet 54:1107–1123

    Article  CAS  PubMed  Google Scholar 

  37. Harding J, Burtness B (2005) Cetuximab: an epidermal growth factor receptor chemeric human-murine monoclonal antibody. Drugs Today (Barc) 41:107–127

    Article  CAS  Google Scholar 

  38. Adams CB, Street DS, Crass M, Bossaer JB (2015) Low rate of cetuximab hypersensitivity reactions in Northeast Tennessee: An Appalachian effect? J Oncol Pharm Pract

  39. Zinn KR, Korb M, Samuel S et al (2015) IND-directed safety and biodistribution study of intravenously injected cetuximab-IRDye800 in cynomolgus macaques. Mol Imaging Biol 17:49–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Heath CH, Deep NL, Beck LN et al (2013) Use of panitumumab-IRDye800 to image cutaneous head and neck cancer in mice. Otolaryngol Head Neck Surg 148:982–990

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kletting P, Meyer C, Reske SN, Glatting G (2010) Potential of optimal preloading in anti-CD20 antibody radioimmunotherapy: an investigation based on pharmacokinetic modeling. Cancer Biother Radiopharm 25:279–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Muylle K, Flamen P, Vugts DJ et al (2015) Tumour targeting and radiation dose of radioimmunotherapy with (90)Y-rituximab in CD20+ B-cell lymphoma as predicted by (89)Zr-rituximab immuno-PET: impact of preloading with unlabelled rituximab. Eur J Nucl Med Mol Imaging 42:1304–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. de Boer E, Warram JM, Tucker MD et al (2015) In vivo fluorescence immunohistochemistry: localization of fluorescently labeled cetuximab in squamous cell carcinomas. Sci Rep 5:10169

    Article  PubMed  PubMed Central  Google Scholar 

  44. Garkavij M, Tennvall J, Strand SE et al (1994) Improving radioimmunotargeting of tumors: the impact of preloading unlabeled L6 monoclonal antibody on the biodistribution of 125I-L6 in rats. J Nucl Biol Med 38:594–600

    CAS  PubMed  Google Scholar 

  45. Kletting P, Kull T, Bunjes D et al (2011) Optimal preloading in radioimmunotherapy with anti-cD45 antibody. Med Phys 38:2572–2578

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Ms. Yolanda Hartman and Ms. Lisa Clemons for their contributions to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason M. Warram.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Funding

Funding for this manuscript includes the Robert Armstrong Research Acceleration Fund, the UAB Comprehensive Cancer Center, NIH/NCI (R21CA179171, R21CA182953, T32CA091078), and institutional equipment loans from Novadaq and LI-COR Biosciences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moore, L.S., Rosenthal, E.L., de Boer, E. et al. Effects of an Unlabeled Loading Dose on Tumor-Specific Uptake of a Fluorescently Labeled Antibody for Optical Surgical Navigation. Mol Imaging Biol 19, 610–616 (2017). https://doi.org/10.1007/s11307-016-1022-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-016-1022-1

Key words

Navigation