Skip to main content

Advertisement

Log in

Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

The advances made in the last two decades in interference technologies, optical instrumentation, catheter technology, optical detectors, speed of data acquisition and processing as well as light sources have facilitated the transformation of optical coherence tomography from an optical method used mainly in research laboratories into a valuable tool applied in various areas of medicine and health sciences. This review paper highlights the place occupied by optical coherence tomography in relation to other imaging methods that are used in medical and life science areas such as ophthalmology, cardiology, dentistry and gastrointestinal endoscopy. Together with the basic principles that lay behind the imaging method itself, this review provides a summary of the functional differences between time-domain, spectral-domain and full-field optical coherence tomography, a presentation of specific methods for processing the data acquired by these systems, an introduction to the noise sources that plague the detected signal and the progress made in optical coherence tomography catheter technology over the last decade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akiba M, Chan KP, Tanno N (2003) Full-field optical coherence tomography by two- dimensional heterodyne detection with a pair of CCD cameras. Opt Lett 28:816–818

    Article  PubMed  CAS  Google Scholar 

  • Amaechi BT, Higham SM, Podoleanu AG, Rogers JA, Jackson DA (2001) Use of optical coherence tomography for assessment of dental caries: quantitative procedure. J Oral Rehabil 28:1092–1093

    Article  PubMed  CAS  Google Scholar 

  • Amaechi BT, Podoleanu A, Higham SM, Jackson DA (2003) Correlation of quantitative light-induced fluorescence and optical coherence tomography applied for detection and quantification of early dental caries. J Biomed Opt 8:642–647

    Article  PubMed  Google Scholar 

  • Baumgartner A, Dichtl S, Hitzenberger CK, Sattmann H, Robl B, Moritz A, Fercher AF, Sperr W (2000) Polarization-sensitive optical coherence tomography of dental structures. Caries Res 34:59–69

    Article  PubMed  CAS  Google Scholar 

  • Brandenburg R, Haller B, Hauger C (2003) Real-time in vivo imaging of dental tissue by means of optical coherence tomography (OCT). Opt Commun 227:203–211

    Article  CAS  Google Scholar 

  • Bonnema GT, Cardinal KO, Williams SK, Barton JK (2009) A concentric three element radial scanning optical coherence tomography endoscope. J Biophoton 2:353–356

    Article  Google Scholar 

  • Boppart SA, Herrmann J, Pitris C, Stamper DL, Brezinski ME, Fujimoto JG (1999) High- resolution optical coherence tomography-guided laser ablation of surgical tissue. J Surg Res 82:275–284

    Article  PubMed  CAS  Google Scholar 

  • Chang S, Liu X, Cai X, Grover CP (2005) Full-field optical coherence tomography and its application to multiple-layer 2D information retrieving. Opt Comm 246:579–585

    Article  CAS  Google Scholar 

  • Chang S, Cai X, Flueraru C (2007) An efficient algorithm used for full-field optical coherence tomography. Opt Lasers Eng 45:1170–1176

    Article  Google Scholar 

  • Chang S, Murdock E, Mao Y, Flueraru C (2010) Optical catheter with rotary optical cap. US patent 662:447

    Google Scholar 

  • Chinn SR, Swanson EA, Fujimoto JG (1997) Optical coherence tomography using a frequency-tunable optical source. Opt Lett 22:340–342

    Article  PubMed  CAS  Google Scholar 

  • Choma MA, Sarunic MV, Yang C, Izatt JA (2003) Sensitivity advantage of swept source and fourier domain optical coherence tomography. Opt Expr 11:2183–2189

    Article  Google Scholar 

  • Choo-Smith LP, Qiu P, Popescu DP, Hewko M, Dong CCS, Cleghorn BM, Sowa MG (2008) Determining depths of incipient caries from OCT imaging. J Dent Res 87(Spec Iss B):2838

    Google Scholar 

  • Cilesiz L, Fockens P, Kerindongo R, Faber D, Tytgat G, Kate FT, Leuwen TV (2002) Comparative optical coherence tomography imaging of human esophagus: How accurate is localization of the muscularis mucosae? Gastrointest Endosc 56:852–857

    Article  PubMed  Google Scholar 

  • Colston BW Jr, Everett MJ, Sathyam US, DaSilva LB, Otis LL (2000) Imaging of the oral cavity using optical coherence tomography. Monogr Oral Sci 17:32–55

    Article  PubMed  Google Scholar 

  • Das A, Sivak MV Jr, Chak A, Wong RC, Westphal V, Rollins AM, Willis J, Isenberg G, Izatt JA (2001) High-resolution endoscopic imaging of the GI tract: A comparative study of optical coherence tomography versus high-frequency catheter probe EUS. Gastrointest Endosc 54:219–224

    Article  PubMed  CAS  Google Scholar 

  • Dolin LS (1998) A theory of optical coherence tomography. Radiophys Quant Electron 41:850–873

    Article  Google Scholar 

  • Dubois A (2001) Phase-map measurements by interferometry with sinusoidal phase modulation and four integrating buckets. J Opt Soc Am A 18:1972–1979

    Article  CAS  Google Scholar 

  • Dubois A (2004) Effects of phase change on reflection in phase-measuring interference microscopy. Appl Opt 43:1503–1507

    Article  PubMed  Google Scholar 

  • Dubois A, Vabre L, Boccara AC, Beaurepaire E (2002) High-resolution ful-field optical coherence tomography with a Linnik microscope. Appl Opt 41:805–812

    Article  PubMed  Google Scholar 

  • Falk GW, Rice TW, Goldblum JR, Richter JE (1999) Jumbo biopsy forceps protocol still misses unsuspected cancer in Barrett’s esophagus with high-grade dysplasia. Gastrointest Endosc 49:170–176

    Article  PubMed  CAS  Google Scholar 

  • Feldchtein F, Gelikonov V, Iksanov R, Gelikonov G, Kuranov R, Sergeev A, Gladkova N, Ourutina M, Reitz D, Warren J (1998) In vivo OCT imaging of hard and soft tissue of the oral cavity. Opt Express 3:239–250

    Article  PubMed  CAS  Google Scholar 

  • Fercher AF (1996) Optical coherence tomography. J Biomed Opt 1:157–173

    Article  Google Scholar 

  • Fercher AF, Roth E (1986) Opthalmic laser interferometry. Proc SPIE 658:48–51

    Google Scholar 

  • Fercher AF, Mengedoht K, Werner W (1988) Eye-length measurement by interferometry with partially coherent light. Opt Lett 13:186–188

    Article  PubMed  CAS  Google Scholar 

  • Fercher FA, Hitzenberger CK, Drexler W, Kemp G, Sattman H (1993) In vivo optical coherence tomography. Am J Ophthalmol 116:113–114

    PubMed  CAS  Google Scholar 

  • Fercher AF, Hitzenberger CK, Kamp G, Elzaiat SY (1995) Measurement of intraocular distances by backscattering spectral interferometry. Opt Comm 117:43–48

    Article  CAS  Google Scholar 

  • Flueraru C, Popescu DP, Mao Y, Chang S, Sowa MG (2010) Added soft tissue contrast using the signal attenuation and the fractal dimension for optical coherence tomography images of porcine arterial tissue. Phys Med Biol 55:2317–2331

    Article  PubMed  CAS  Google Scholar 

  • Fried D, Xie J, Shafi S, Featherstone JDB, Breunig TM, Le C (2002) Imaging caries and lesion progression with polarization sensitive optical coherence tomography. J Biomed Opt 7:618–627

    Article  PubMed  Google Scholar 

  • Fried D, Featherstone JD, Darling CL, Jones RS, Ngaotheppitak P, Buhler CM (2005) Early caries imaging and monitoring with near-infrared light. Dent Clin North Am 49:771–793

    Article  PubMed  Google Scholar 

  • Fujimoto JG, De Silvestri S, Ippen EP, Puliafito CA, Margolis R, Oseroff A (1986) Femtosecond optical ranging in biological systems. Opt Lett 11:150–152

    Article  PubMed  CAS  Google Scholar 

  • Goldberg BD, Iftimia NV, Bressner JE, Pitman MB, Halpern E, Bouma BE, Tearney GJ (2008) Automated algorithm for differentiation of human breast tissue using low coherence interferometry for fine needle aspiration biopsy guidance. J Biomed Opt 13:014014

    Article  PubMed  Google Scholar 

  • Golubovic B, Bouma BE, Tearney GJ, Fujimoto JG (1997) Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:Forsterite laser. Opt Lett 22:1704–1706

    Article  PubMed  CAS  Google Scholar 

  • Greivenkamp JE, Bruning JH (1992) Phase shift interferometers. In: Optical Shop Testing, 2nd edn. Wiley, New York, pp 501–598

    Google Scholar 

  • Hausler G, Lindner MW (1998) "Coherence radar" and "spectral radar" - new tools for dermatological diagnosis. J Biomed Opt 3:21–31

    Article  Google Scholar 

  • Herz PR, Chen Y, Aguirre AD, Schneider K, Hsiung P (2004) Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography. Opt Lett 29:2261–2263

    Article  PubMed  CAS  Google Scholar 

  • Hitzenberger C, Goetzinger E, Sticker M, Pircher M, Fercher A (2001) Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography. Opt Express 9:780–790

    Article  PubMed  CAS  Google Scholar 

  • Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG (1991) Optical coherence tomography. Science 254:1178–1181

    Article  PubMed  CAS  Google Scholar 

  • Iftimia NV, Bouma BE, Pitman MB, Goldberg B, Bressner J, Tearney GJ (2005) A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance. Rev Sci Instrum 76:064301

    Article  Google Scholar 

  • Isenberg G, Sivak MV, Chak A, Wong RCK, Willis JE, Wolf B, Rowland DY, Das A, Rollins A (2005) Accuracy of endoscopic optical coherence tomography in the detection of dysplasia in Barrett’s esophagus: a prospective, double-blinded study. Gastrointest Endosc 62:825–831

    Article  PubMed  Google Scholar 

  • Izatt JA, Hee MR, Owen GM, Swanson EA, Fujimoto JG (1994) Optical coherence microscopy in scattering media. Opt Lett 19:590–592

    Article  PubMed  CAS  Google Scholar 

  • Izatt JA, Kulkarni MD, Wang HW, Kobayashi K, Sivak MV Jr (1996) Optical coherence tomography and microscopy in gastrointestinal tissues. IEEE J Sel Top Quant Electron 2:1017–1028

    Article  CAS  Google Scholar 

  • Jafri MS, Farhang S, Tang RS, Desai N, Fishman PS, Rohwer RG, Tang C, Schmitt JM (2005) Optical coherence tomography in the diagnosis and treatment of neurological disorders. J Biomed Opt 10:051603

    Article  PubMed  Google Scholar 

  • Jang IK, Hursting MJ (2005) When heparins promote thrombosis: review of heparin- induced thrombocytopenia. Circulation 111:2671–2683

    Article  PubMed  Google Scholar 

  • Jang IK, Tearney GJ, Bouma BE (2001) Visualization of tissue prolapsed between coronary stent struts by optical coherence tomography: comparison with intravascular ultrasound. Circulation 104:2754

    Article  PubMed  CAS  Google Scholar 

  • Jang IK, Bouma BE, Kang DH, Park SJ, Park SW, Seung KB, Choi KB, Shishkov M, Schlendorf K, Pomerantsev E, Houser SL, Aretz HT, Tearney GJ (2002) Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol 39:604–609

    Article  PubMed  Google Scholar 

  • Kino GS, Chim SC (1990) Mirau correlation microscope. Appl Opt 29:3775–3783

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi K, Izatt JA, Kulkarni MD, Willis J, Sivak MV Jr (1998) High-resolution cross-sectional imaging of the gastrointestinal tract using optical coherence tomography. Preliminary results. Gastrointest Endosc 47:515–523

    Article  PubMed  CAS  Google Scholar 

  • Leitgeb R, Hitzenberger CK, Fercher AF (2003) Performance of Fourier domain vs. time domain optical coherence tomography. Opt Exp 11:889–894

    Article  CAS  Google Scholar 

  • Lexer F, Hitzenberger CK, Fercher AF, Kulhavy M (1997) Wavelength-tuning interferometry of intraocular distances. Appl Opt 36:6548–6553

    Article  PubMed  CAS  Google Scholar 

  • Li H, Standish BA, Mariampillai A, Munce NR, Mao Y, Chiu S, Marcon NE, Wilson BC, Vitkin A, Yang VXD (2006) Feasibility of interstitial Doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy. Lasers Surg Med 38:754–761

    Article  PubMed  Google Scholar 

  • Liu X, Cobb MJ, Chen Y, Kimmey MB, Li X (2004) Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography. Opt Lett 29:1763–1765

    Article  PubMed  Google Scholar 

  • Mao Y, Chang S, Sherif S, Flueraru C (2007) Graded-index fiber lens proposed for ultrasmall probes used in biomedical imaging. Appl Opt 46:5887–5894

    Article  PubMed  Google Scholar 

  • Mao Y, Chang S, Flueraru C (2010) Fiber lenses for ultra-small probes used in optical coherent tomography. J Biomed Sci Eng 3:27–34

    Article  Google Scholar 

  • Maragos P, Kaiser JF, Quatieri TF (1993) On amplitude and frequency demodulation using energy operators. IEEE Trans Signal Process 41:1532–1550

    Article  Google Scholar 

  • Min EJ, Na J, Ryu SY, Lee BH (2009) Single-body lensed-fiber scanning probe actuated by magnetic force for optical imaging. Opt Lett 34:1897–1899

    Article  PubMed  Google Scholar 

  • Morkel PR, Laming R, Payne DN (1990) Noise characteristics of high-power doped-fiber superluminescent sources. Electron Lett 26:96–97

    Article  Google Scholar 

  • Munce NR, Yang VXD, Standish B, Qiang B, Mao Y, Li H, Butany J, Courtney BK, Graham JJ, Dick AJ, Strauss BH, Wright GA, Vitkin IA (2006) Ex vivo imaging of chronic total occlusions using forward-looking optical coherence tomography. Lasers Surg Med 39:28–35

    Article  Google Scholar 

  • Munce NR, Mariampillai A, Standish BA, Pop M, Anderson KJ, Liu GY, Luk T, Courtney BK, Wright GA, Vitkin IA, Yang VXD (2008) Electrostatic forward- viewing scanning probe for Doppler optical coherence tomography using a dissipative polymer catheter. Opt Lett 33:657–659

    Article  PubMed  CAS  Google Scholar 

  • Murphy E (2008) The Evolution of Spectral Domain OCT. http://www.ophmanagement.com/article.aspx?article=101888

  • Ngaotheppitak P, Darling CL, Fried D (2005) Measurement of the severity of natural smooth surface (interproximal) caries lesions with polarization sensitive optical coherence tomography. Lasers Surg Med 37:78–88

    Article  PubMed  Google Scholar 

  • Novak J (2003) Five-step phase-shifting algorithms with unknown values of phase shift. Optik-Intl Light Electr Opt 114:63–68

    Article  Google Scholar 

  • Oliver BM (1965) Thermal and quantum noise. Proc IEEE 53:436–454

    Article  Google Scholar 

  • Takada K (1998) Noise in optical low coherence reflectometry. IEEE J Quant Elect 34:1098–1108

    Article  CAS  Google Scholar 

  • Pan Y, Birngruber R, Rosperich J, Engelhardt R (1995) Low-coherence optical tomography in turbid tissue: theoretical analysis. Appl Opt 34:6564–6574

    Article  PubMed  CAS  Google Scholar 

  • Patel NA, Stamper DL, Brezinski ME (2005) Review of the ability of optical coherence tomography to characterize plaque, including a comparison with intravascular ultrasound. Cardiovasc Intervent Radiol 28:1–9

    Article  PubMed  Google Scholar 

  • Petersen CL, McNamara EI, Lamport RB, Atlas M, Schmitt JM, Swanson EA, Magnin P (2005) Scanning miniature optical probes with optical distortion correction and rotational control. US Patent, 6891984

  • Podoleanu AG (2000) Unbalanced versus balanced operation in an optical coherence tomography system. Appl Opt 39:173–182

    Article  PubMed  CAS  Google Scholar 

  • Podoleanu AG, Jackson DA (1999) Noise analysis of a combined optical coherence tomography and a confocal scanning ophthalmoscope. Appl Opt 38:2116–2127

    Article  PubMed  CAS  Google Scholar 

  • Popescu DP, Sowa MG, Hewko MD, Choo-Smith L-P (2008) Assessment of early demineralization in teeth using the signal attenuation in optical coherence tomography images. J Biomed Opt 13:054053. doi:10.1117/1.2992129

    Article  PubMed  Google Scholar 

  • Popescu DP, Flueraru C, Mao Y, Chang S, Sowa MG (2010) Signal attenuation and box- counting fractal analysis of optical coherence images of arterial tissue. Biomed Opt Express 1:268–277

    Article  PubMed  Google Scholar 

  • Reed WA, Yan MF, Schnitzer MJ (2002) Gradient-index fiber-optic microprobes for minimally invasive in vivo low-coherence interferometry. Opt Lett 27:1794–1796

    Article  PubMed  Google Scholar 

  • Regar E, Schaar JA, Mont E, Virmani R, Serruys PW (2003) Optical coherence tomography. Cardiovasc Radiat Med 4:198–204

    Article  PubMed  CAS  Google Scholar 

  • Rollins AM, Izatt JA (1999) Optical interferometer designs for optical coherence tomography. Opt Lett 24:1484–1486

    Article  PubMed  CAS  Google Scholar 

  • Rosa CC, Podoleanu AG (2004) Limitation to the achievable signal to noise ratio in optical coherence tomography due to mismatch of the balanced receiver. Appl Opt 43:4802–4815

    Article  PubMed  Google Scholar 

  • Saleh B (1978) Photoelectron statistics. Springer-Verlag, Berlin

    Google Scholar 

  • Schmitt JM (1999) Optical coherence tomography (OCT): A review. IEEE J Sel Top Quant Electron 5:1205–1215

    Article  CAS  Google Scholar 

  • Schmitt JM, Knuttel A, Yadlowsky AM, Eckhaus MA (1994) Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering. Phys Med Biol 39:1705–1720

    Article  PubMed  CAS  Google Scholar 

  • Sherif SS, Rosa CC, Flueraru C, Chang S, Mao Y, Podoleanu AG (2008) Statistics of the depth-scan photocurrent in time-domain optical coherence tomography. J Opt Soc Am 25:16–20

    Article  Google Scholar 

  • Shiomi M, Ito T, Yamada S, Kawashima S, Fan J (2003) Development of an Animal Model for Spontaneous Myocardial Infarction (WHHL-MI Rabbit). Arterioscler Thromb Vasc Biol 23:1239–1244

    Article  PubMed  CAS  Google Scholar 

  • Shishkov M, Bouma BE, Jang IK, Jang DH, Aretz HT, Houser SL, Brady TJ, Schlendorf K, Tearney GJ (2000) Optical coherence tomography of porcine coronary arteries in vivo. Presented at the 2000 Optical Society of America Biomedical Topical Meeting, Miami, Florida

  • Shishkov M., Bouma BE, Tearney GJ (2006) System and method for optical coherence tomography. US Patent, 20060067620A1

  • Smolka G (2008), Optical Coherence Tomography – Technology, Markets, and Applications 2008–2012, BioOptics World – PenWell Corp., www.BioOpticsWorld.com/resourcecenter/OCTreport.html

  • Standish B, Yang V, Munce N, Song L, Gardiner G, Lin A, Mao Y, Vitkin A, Marcon N, Wilson B (2007) Doppler optical coherence tomography monitoring of microvascular tissue response during photodynamic therapy in an animal model of Barrett's esophagus. Gastrointest Endosc 66:326–333

    Article  PubMed  Google Scholar 

  • Strategies Unlimited, Optical Coherence Tomography (2010) Technology, Applications, and Market, January 2010 at http://www.optoiq.com/index/market-research/display/su-article-display/articles/strategies-unlimited/reports/2010/1/optical-coherence.html

  • Su J, Zhang J, Yu L, Chen Z (2007) In vivo three-dimensional microelectromechanical endoscopic swept source optical coherence tomography. Opt Express 15:10390–10396

    Article  PubMed  Google Scholar 

  • Swanson EA, Huang D, Hee MR, Fujimoto JG, Lin CP, Puliafito CA (1992) High-speed optical coherence domain reflectometry. Opt Lett 17:151–153

    Article  PubMed  CAS  Google Scholar 

  • Swanson EA, Izatt JA, Hee MR, Huang D, Lin CP, Schuman JS, Puliafito CA, Fujimoto JG (1993) In vivo retinal imaging by optical coherence tomography. Opt Lett 18:1864–1869

    Article  PubMed  CAS  Google Scholar 

  • Swanson E, Petersen CL, McNamara E, Lamport RB, Kelly DL (2002) Ultra-small optical probes, imaging optics, and methods for using same. US Patent, 6445939

  • Takahashi Y, Iwaya M, Watanabe Y, Sato M (2007) Optical probe using eccentric optics for optical coherence tomography. Opt Commun 271:285–290

    Article  CAS  Google Scholar 

  • Tearney GJ, Brezinski ME, Southern JF, Bouma BE, Boppart SA, Fujimoto JG (1997) Optical biopsy in human gastrointestinal tissue using optical coherence tomography. Am J Gastro 92:1800–1804

    CAS  Google Scholar 

  • Tearney GJ, Jang IK, Bouma BE (2003a) Evidence of cholesterol crystals in atherosclerotic plaque by optical coherence tomographic (OCT) imaging. Eur Heart J 24:1462–1467

    Article  Google Scholar 

  • Tearney GJ, Yabushita H, Houser SL, Aretz HT, Jang IK, Schlendorf K, Kauffmann CR, Shishkov M, Halpern EF, Bouma BE (2003b) Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation 107:113–119

    Article  PubMed  Google Scholar 

  • Tran PH, Mukai DS, Brenner M, Chen Z (2004) In vivo endoscopic optical coherence tomography by use of a rotational microelectromechanical system probe. Opt Lett 29:1236–1238

    Article  PubMed  Google Scholar 

  • Vabre L, Dubois A, Boccara AC (2002) Thermal-light full-filed optical coherence tomography. Opt Lett 27:530–532

    Article  PubMed  CAS  Google Scholar 

  • Van der Meer FJ, Faber DJ, Sassoon DMB, Aalders MC, Pasterkamp G, Van Leeuwen TG (2005) Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography. IEEE Trans Med Imaging 24:1369–1376

    Article  PubMed  Google Scholar 

  • Walz M (2006) Hot Technologies for 2007: OCT: Imaging of the Future. R&D Mag 6. http://www.rdmag.com/Featured-Articles/2006/12/Hot-Technologies-for-2007-OCT-Imaging-of-the-Future/

  • Wang XJ, Milner TE, de Boer JF, Zhang Y, Pashley DH, Nelson JS (1999) Characterization of dentin and enamel by use of optical coherence tomography. Appl Opt 38:2092–2096

    Article  PubMed  CAS  Google Scholar 

  • Wang ZG, Lee CSD, Waltzer WC, Liu JX, Xie HK, Yuan ZJ, Pan YT (2007) In vivo bladder imaging with microelectromechanical systems-based endoscopic spectral domain optical coherence tomography. J Biomed Opt 12:034009

    Article  PubMed  Google Scholar 

  • Wang J, Hathaway M, Shidlovski V, Dainty C, Podoleanu A (2009) Evaluation of the signal noise ratio enhancement of SS-OCT versus TD-OCT using a full field interferometer. Proc SPIE 7168:71682K. doi:10.1117/12.809043

    Article  Google Scholar 

  • Westphal V, Rollins AM, Willis J, Sivak MV Jr, Izatt JA (2005) Correlation of endoscopic optical coherence tomography with histology in the lower-GI tract. Gastrointest Endosc 61:537–546

    Article  PubMed  Google Scholar 

  • Wojtkowski M, Leitgeb R, Kowalczyk A, Bajraszewski T, Fercher AF (2002) In vivo human retinal imaging by fourier domain optical coherence tomography. J Biomed Opt 7:457–463

    Article  PubMed  Google Scholar 

  • Wu L, Xie H (2009) Electrothermal micromirror with dual-reflective surfaces for circumferential scanning endoscopic imaging. J Micro/Nanolith MEMS MOEMS 8:013030. doi:10.1117/1.3082186

    Article  Google Scholar 

  • Wu J, Conry M, Gu C, Wang F, Yaqoob Z, Yang C (2006) Paired-angle-rotation scanning optical coherence tomography forward-imaging probe. Opt Lett 31:1265–1267

    Article  PubMed  Google Scholar 

  • Xu Y, Singh J, Jason THS, Ramakrishna K, Premchandran CS, Kelvin CWS, Kuan CT, Chen M, Olivo MC, Sheppard CJR (2007) MEMS based non-rotatory circumferential scanning optical probe for endoscopic optical coherence tomography Proc SPIE 6627:662715. doi:10.1117/12.726736

  • Yabushita H, Bouma BE, Houser SL, Aretz HT, Jang IK, Schlendorf KH, Kauffmann CR, Shishkov M, Kang DH, Halpern EF, Tearney GJ (2002) Characterization of human atherosclerosis by optical coherence tomography. Circulation 106:1640–1645

    Article  PubMed  Google Scholar 

  • Yang VXD, Mao YX, Munce N, Standish B, Kucharczyk W, Marcon NE, Wilson BC, Vitkin IA (2005) Interstitial doppler optical coherence tomography. Opt Lett 30:1791–1793

    Article  PubMed  Google Scholar 

  • Zara JM, Patterson PE (2006) Polyimide amplified piezoelectric scanning mirror for spectral domain optical coherence tomography. Appl Phys Lett 89:263901. doi:10.1063/1.2410239

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan P. Popescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popescu, D.P., Choo-Smith, LP., Flueraru, C. et al. Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications. Biophys Rev 3, 155–169 (2011). https://doi.org/10.1007/s12551-011-0054-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-011-0054-7

Keywords

Navigation