Skip to main content
Log in

Estimation of self-motion by optic flow processing in single visual interneurons

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

HUMANS, animals and some mobile robots use visual motion cues for object detection and navigation in structured surroundings1–4. Motion is commonly sensed by large arrays of small field movement detectors, each preferring motion in a particular direction5,6. Self-motion generates distinct 'optic flow fields' in the eyes that depend on the type and direction of the momentary locomotion (rotation, translation) 7. To investigate how the optic flow is processed at the neuronal level, we recorded intracellularly from identified interneurons in the third visual neuropile of the blowfly8. The distribution of local motion tuning over their huge receptive fields was mapped in detail. The global structure of the resulting 'motion response fields' is remarkably similar to optic flow fields. Thus, the organization of the receptive fields of the so-called VS neurons9,10 strongly suggests that each of these neurons specifically extracts the rotatory component of the optic flow around a particular horizontal axis. Other neurons are probably adapted to extract translatory flow components. This study shows how complex visual discrimination can be achieved by task-oriented preprocessing in single neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nakayama, K. Vision Res. 25, 625–660 (1985).

    Article  CAS  Google Scholar 

  2. Wehner, R. in Handbook of Sensory Phsyiology Vol. VII/6C (ed. Autrum, H.) 287–616 (Springer, Berlin, 1981).

    Google Scholar 

  3. Warren, W. H. & Hannon, D. J. Nature 336, 162–163 (1988).

    Article  ADS  Google Scholar 

  4. Franceschini, N., Pichon, J. M. & Blanes, C. Phil. Trans. R. Soc. Lond. B 337, 283–294 (1992).

    Article  ADS  Google Scholar 

  5. Borst, A. & Egelhaaf, M. in Visual Motion and its Role in the Stabilization of Gaze (eds Miles, F. A. & Wallman, J.) 3–27 (Elsevier, Amsterdam, 1993).

    Google Scholar 

  6. Reichardt, W. J. Comp. Physiol. A 161, 533–547 (1987).

    Article  CAS  Google Scholar 

  7. Gibson, J. J. The Perception of the Visual World (Houghton Mifflin, Boston, 1950).

    Google Scholar 

  8. Hausen, K. in Visual Motion and its Role in the Stabilization of Gaze (eds Miles, F. A. & Wallman, J.) 203–235 (Elsevier, Amsterdam, 1993).

    Google Scholar 

  9. Hengstenberg, R., Hausen, K. & Hengstenberg, B. J. Comp. Physiol. A 149, 163–177 (1982).

    Article  Google Scholar 

  10. Hengstenberg, R. J. Comp. Physiol. A 149, 179–193 (1982).

    Article  Google Scholar 

  11. Nakayama, K. & Loomis, J. M. Perception 3, 63–80 (1974).

    Article  CAS  Google Scholar 

  12. Koenderink, J. J. & van Doorn, A. J. Biol. Cybern. 56, 247–254 (1987).

    Article  CAS  Google Scholar 

  13. Tanaka, K. & Saito, H.-A. J. Neurophysiol. 62, 626–641 (1989).

    Article  CAS  Google Scholar 

  14. Duffy, C. J. & Wurtz, R. H. J. Neurophysiol. 65, 1329–1345 (1991).

    Article  CAS  Google Scholar 

  15. Collett, T. S., Nalbach, H.-O. & Wagner, H. in Visual Motion and its Role in the Stabilization of Gaze (eds Miles, F. A. & Wallman, J.) 239–263 (Elsevier, Amsterdam, 1993).

    Google Scholar 

  16. Morrone, M. C., Burr, D. C. & Vaina, L. M. Nature 376, 507–509 (1995).

    Article  ADS  CAS  Google Scholar 

  17. Götz, K. G., Hengstenberg, B. & Biesinger, R. Biol. Cybern. 35, 101–112 (1979).

    Article  Google Scholar 

  18. Borst, A. & Egelhaaf, M. Proc. Natl Acad. Sci. USA 89, 4139–4143 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Geiger, G. & Nässel, D. R. Nature 293, 398–399 (1981).

    Article  ADS  CAS  Google Scholar 

  20. Pflugfelder, G.-O. & Heisenberg, M. Comp. Biochem. Physiol. A 110, 185–202 (1995).

    Article  CAS  Google Scholar 

  21. Hausen, K. & Wehrhahn, C. Proc. R. Soc. Lond. B 219, 211–216 (1983).

    Article  ADS  Google Scholar 

  22. Hengstenberg, R. Neuroscience 3, 19–29 (1991).

    Google Scholar 

  23. Krapp, H. G. & Hengstenberg, R. Vision Res. (in the press).

  24. Hengstenberg, R., Bülthoff, H. & Hengstenberg, B. in Functional Neuroanatomy (ed. Strausfeld, N. J.) 183–205 (Springer, Berlin, 1983).

    Book  Google Scholar 

  25. Hengstenberg, R. in Proc. 4th Int. Congr. of Neuroethology (eds Burrows, M., Matheson, T., Newland, P. L. & Schuppe, H.) 255 (Thieme, Stuttgart, 1995).

    Google Scholar 

  26. Srinivasan, M. V., Jin, Z. F., Stange, G. & Ibbotson, M. R. Biol. Cybern. 68, 199–207 (1993).

    Article  CAS  Google Scholar 

  27. Krapp, H. thesis, Univ. Tübingen (1995).

  28. Krapp, H. & Hengstenberg, R. in Proc. 4th Int. Congr. of Neuroethology (eds Burrows, M., Matheson, T., Newland, P. L. & Schuppe, H.) 264 (Thieme, Stuttgart, 1995).

    Google Scholar 

  29. Egelhaaf, M., Borst, A. & Reichardt, W. J. Opt. Soc. Am. A 6, 1070–1087 (1989).

    Article  ADS  CAS  Google Scholar 

  30. Strausfeld, N. J., Seyan, H. S., Wohlers, D. & Bacon, J. P. in Functional Neuroanatomy (ed Strausfeld, N. J.) 132–155 (Springer, Berlin, 1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krapp, H., Hengstenberg, R. Estimation of self-motion by optic flow processing in single visual interneurons. Nature 384, 463–466 (1996). https://doi.org/10.1038/384463a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/384463a0

  • Springer Nature Limited

This article is cited by

Navigation