Skip to main content
Log in

The number and structure of giant vertical cells (VS) in the lobula plate of the blowflyCalliphora erythrocephala

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

  1. 1.

    The structure of one class of giant tangential neurons in the lobula plate ofCalliphora, the ‘Vertical System (VS)’ has been investigated by light microscopy. Different staining and reconstruction procedures were employed to ensure that all existing VS-neurons are revealed.

  2. 2.

    There are 11 VS-cells in a characteristic, and constant arrangement (Fig. 2). Each cell covers a particular area of the lobula plate, i.e., a distinct area of the retinotopic input array (Table 2), and therefore has a distinct receptive field.

  3. 3.

    Although VS-cells in general tend to occupy the posterior surface of the lobula plate, only three of them (VS 2-VS 5) reside exclusively in this layer. The other cells (VS1 and VS6-VS10) have bistratified dendritic arborizations (Fig. 6), whose dorsal parts are apposed to the anterior surface of the lobula plate.

  4. 4.

    The arrangement, territory and stratification of any given VS-cell is largely invariant in different individuals, whereas the branching pattern may vary considerably (Fig. 3).

  5. 5.

    The present results provide the framework for physiological studies of the role of individual VS-cells in movement perception, and their involvement in the control of particular locomotor behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beersma DGH, Stavenga DG, Kuiper JW (1977) Retinal lattice, visual field and binocularities in flies. J Comp Physiol 199:207–220

    Google Scholar 

  • Bishop CA, Bishop LG (1981) Vertical motion detectors and their synaptic relations in the third optic lobe of the fly. J Neurobiol 12:281–296

    Google Scholar 

  • Braitenberg V (1972) Periodic structures, and structural gradients in the visual ganglia of the fly. In: Wehner R (ed) Information processing in the visual systems of arthropods. Springer, Berlin Heidelberg New York, pp 3–15

    Google Scholar 

  • Bullock TH, Horridge GA (1965) Structure and function in the nervous systems of invertebrates, vols 1, 2. Freeman, San Francisco

    Google Scholar 

  • Cajal SR, Sanchez D (1975) Contributión al conocimiento de los centros nerviosos de los insectos. Trab Lab Invest Biol (Madrid) 13:1–169

    Google Scholar 

  • Dvorak DR, Bishop LG, Eckert HE (1975a) Intracellular recording and staining of directionally selective motion detecting neurons in fly optic lobe. Vision Res 15:451–453

    Google Scholar 

  • Dvorak DR, Bishop LG, Eckert HE (1975b) On the identification of movement detectors in the fly optic lobe. J Comp Physiol 100:5–23

    Google Scholar 

  • Eckert H (1979) Anatomie, Elektrophysiologie und funktioneile Bedeutung bewegungssensitiver Neurone in der Sehbahn von Dipteren (Phaenicia). Habilitationsschrift, Ruhr-Universität Bochum

  • Eckert H (1981) The horizontal cells in the lobula plate of the blowfly,Phaenicia sericata. J Comp Physiol 143:511–526

    Google Scholar 

  • Eckert H, Bishop EG (1978) Anatomical and physiological properties of the vertical cells in the third optic ganglion ofPhaenicia sericata (Diptera, Calliphoridae). J Comp Physiol 126:57–86

    Google Scholar 

  • Eckert HE, Hamdorf K (1981) Action potentials in “nonspiking” visual interneurons. Z Naturforsch [C] 36:470–474

    Google Scholar 

  • Eckert H, Meller K (1981) Synaptische Strukturen identifizierter bewegungssensitiver Interneurone im Gehirn der Fliege,Phaenicia. Verb Dtsch Zool Ges 1981:179

    Google Scholar 

  • Fischbach KF, Heisenberg M (1981) Structural brain mutant ofDrosophila melanogaster with reduced cell number in the medulla cortex, and with normal optomotor yaw response. Proc Natl Acad Sci USA 78:1105–1109

    Google Scholar 

  • Götz KG (1980) Visual guidance inDrosophila. In: Siddiqi O, Babu P, Hall EM, Hall JC (eds). Development and neurobiology ofDrosophila. Plenum Press, New York, pp 391–407

    Google Scholar 

  • Goodman CS (1978) Isogenic grasshoppers — genetic variability in morphology of identified neurons. J Comp Neurol 182:681–705

    Google Scholar 

  • Hausen K (1976a) Struktur, Funktion und Konnektivität bewegungsempfindlicher Interneurone im dritten optischen Neuropil der SchmeißfliegeCalliphora erythrocephala. Thesis, Universität Tübingen

  • Hausen K (1976b) Functional characterization and anatomical identification of motion sensitive neurons in the lobula plate of the blowflyCalliphora erythrocephala. Z Naturforsch [C] 31:629–633

    Google Scholar 

  • Hausen K (1977) Signal processing in the insect eye. In: Stent GS (ed). Function and formation of neural system. Dahlem Konferenzen, Berlin, pp 81–110

    Google Scholar 

  • Hausen K (1981) Monocular and binocular computation of motion in the lobula plate of the fly. Verb Dtsch Zool Ges 1981:47–70

    Google Scholar 

  • Hausen K, Wolburg-Buchholz K (1980) An improved cobalt- sulphide silver-intensification method for electron microscopy. Brain Res 187:462–466

    Google Scholar 

  • Hausen K, Strausfeld NJ (1980) Sexually dimorphic interneuron arrangements in the fly visual system. Proc R Soc Lond [Biol] 208:51–71

    Google Scholar 

  • Hausen K, Wolburg-Buchholz K, Ribi WA (1980) The synaptic organization of visual interneurons in the lobula complex of flies. Cell Tissue Res 208:371–387

    Google Scholar 

  • Heide G (in press) Neural mechanisms of flight control in Diptera. BIONA Rep

  • Heisenberg M, Wonneberger R, Wolf R (1978) Optomotor blind H31 — aDrosophila mutant of the lobula plate giant neurons. J Comp Physiol 124:287–296

    Google Scholar 

  • Hengstenberg R (1977) Spike responses of “non-spiking” visual interneurone. Nature 270:338–340

    Google Scholar 

  • Hengstenberg R (1981) Visuelle Drehreaktionen von Vertikalzellen in der Lobula Platte vonCalliphora. Verh Dtsch Zool Ges 1981:180

    Google Scholar 

  • Hengstenberg R, Hengstenberg B (1980) Intracellular staining of insect neurons with procion yellow. In: Strausfeld NJ, Miller TA (eds) Neuroanatomical techniques. Springer, Berlin Heidelberg New York, pp 308–324

    Google Scholar 

  • Hengstenberg R, Bülthoff H, Hengstenberg B (in press) Three dimensional reconstruction and stereoscopic display of neurons in the fly visual system. In: Strausfeld NJ (ed) Neuroanatomical techniques. Springer, Berlin Heidelberg New York

  • Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27:137A

    Google Scholar 

  • Kirschfeld K (1979) The visual system of the fly: Physiological optics, and functional anatomy, as related to behaviour. In: Schmitt FO, Worden FG (eds) The neurosciences, IV. Study program. MIT Press, Cambridge, Massachusetts, pp 297–310

    Google Scholar 

  • Nachtigall W, Wilson D (1967) Neuro-muscular control of dipteran flight. J Exp Biol 47:77–97

    Google Scholar 

  • Nässei DR (1981) Transneuronal labelling with horseradish peroxidase in the visual system of the housefly. Brain Res 206:431–438

    Google Scholar 

  • Pease DC (1964) Histological techniques for electron microscopy. Academic Press, New York

    Google Scholar 

  • Pierantoni R (1975) An observation on the giant fibre posterior optic tract in the fly. In: Drischel VH, Dettmar P (eds) Biokybernetik, vol 5. Fischer, Jena

    Google Scholar 

  • Pierantoni R (1976) A look into the cock-pit of the fly: the architecture of the lobular plate. Cell Tissue Res 171:101–122

    Google Scholar 

  • Poggio T, Reichardt W (1976) Visual control of orientation behaviour in the fly. Part II. Toward the underlying neural interactions. Q Rev Biophys 9:377–438

    Google Scholar 

  • Reichardt W, Poggio T (1976) Visual control of orientation behaviour in the fly. Part I. A quantitative analysis. Q Rev Biophys 9:311–375

    Google Scholar 

  • Soohoo SL, Bishop LG (1980) Intensity and motion responses of giant vertical neurons in the fly eye. J Neurobiol 11:159–177

    Google Scholar 

  • Strausfeld NJ (1976) Atlas of an insect brain. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Strausfeld NJ, Obermayer M (1976) Resolution of intraneuronal and transsynaptic migration of cobalt in the insect visual and nervous systems. J Comp Physiol 110:1–12

    Google Scholar 

  • Strausfeld NJ, Nässel DR (1981) Neuroarchitecture of brain regions that subserve the compound eyes of Crustacea and insects. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6B. Springer, Berlin Heidelberg New York, pp 1–132

    Google Scholar 

  • Wehner R (1981) Spatial vision in Arthropods. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6C, Vision in invertebrates. Springer, Berlin Heidelberg New York, pp 287–616

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hengstenberg, R., Hausen, K. & Hengstenberg, B. The number and structure of giant vertical cells (VS) in the lobula plate of the blowflyCalliphora erythrocephala . J. Comp. Physiol. 149, 163–177 (1982). https://doi.org/10.1007/BF00619211

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00619211

Keywords

Navigation