Skip to main content
Log in

Structural studies of membranes and surface layers up to 1,000 Å thick using X-ray standing waves

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE X-ray standing wave (XSW) method, developed in the 1960s, was used originally to determine heavy atom positions in and on silicon and germanium single crystals1–7. An X-ray standing wave generated by the interference of coherent incident and reflected beams excites X-ray fluorescence from the heavy atom, the intensity of which as a function of incident angle provides an indication of the atom's distance from the X-ray reflecting surface. The availability of X-ray mirrors and the ability to prepare layered synthetic microstructures has made possible the study of biologically relevant structures using the XSW technique on length scales of typically tens to hundreds of ångströms8–12, allowing heavy atoms in such structures to be located with angstrom or subangstrom resolution. Many model biological systems (such as Langmuir-Blodgett films, which mimic membranes) require access to still larger scales, but it is not obvious that an XSW will remain coherentover such length scales. Here we report studies of a lipid multilayer system using the XSW method, in which we have been able to locate the metal atoms in a zinc arachidate bilayer with angstrom resolution at a distance of almost 1,000 Å above the surface of a gold mirror. Our results indicate that the XSW technique should be useful for structural studies of supramolecular aggregates, receptor-ligand interactions and multi-membrane stacks, in which length scales of this order are encountered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Batterman, B. W. Phys. Rev. A133, 759–764 (1964).

    Article  ADS  CAS  Google Scholar 

  2. Batterman, B. W. Phys. Rev. Lett. 22, 703–705 (1969).

    Article  ADS  CAS  Google Scholar 

  3. Golovchenko, J. A., Batterman, B. W. & Brown, W. L. Phys. Rev. B10, 4239–4243 (1974).

    Article  ADS  CAS  Google Scholar 

  4. Andersen, S. K., Golovchenko, J. A. & Mair, G. Phys. Rev. Lett. 37, 1141–1145 (1976).

    Article  ADS  CAS  Google Scholar 

  5. Cowan, P. L., Golovchenko, J. A. & Robbins, M. F. Phys. Rev. Lett. 44, 1680–1683 (1980).

    Article  ADS  CAS  Google Scholar 

  6. Golovchenko, J. A., Patel, J. R., Kaplan, D. R., Cowan, P. L. & Bedzyk, M. J. Phys. Rev. Lett. 49, 560–563 (1982).

    Article  ADS  CAS  Google Scholar 

  7. Bedzyk, M. J. & Materlik, G. Phys. Rev. B31, 4110–4112 (1985).

    Article  ADS  CAS  Google Scholar 

  8. Bedzyk, M. J., Bilderback, D. H., Bommarito, G. M., Caffrey, M. & Schildkraut, J. S. Science 241, 1788–1791 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Bedzyk, M. J., Bommarito, G. M. & Schildkraut, J. S. Phys. Rev. Lett. 62, 1376–1379 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Bedzyk, M. J., Bommarito, G. M., Caffrey, M. & Penner, T. L. Science 248, 52–56 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Iida, A., Matsushita, T. & Ishikawa, T. Jap. J. appl. Phys. 24, L675–678 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Zheludeva, S. I., Lagomarsino, S., Novikova, N. N., Kovalchuk, M. V. & Scarinci, F. Thin Solid Films 193/194, 395–400 (1990).

    Article  ADS  Google Scholar 

  13. Parratt, L. G. Phys. Rev. 95, 359–369 (1954).

    Article  ADS  Google Scholar 

  14. Marra, W. C., Eisenberger, P. & Cho, A. Y. J. appl. Phys. 50, 6927–6933 (1979).

    Article  ADS  CAS  Google Scholar 

  15. Becker, R. S., Golovchenko, J. A. & Patel, J. R. Phys. Rev. Lett. 50, 153–156 (1983).

    Article  ADS  CAS  Google Scholar 

  16. Bloch, J. M. et al. Phys. Rev. Lett. 54, 1039–1042 (1985).

    Article  ADS  CAS  Google Scholar 

  17. de Boer, D. K. G. Phys. Rev. B44, 498–511 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Bedzyk, M., Penner, T. et al. Structural studies of membranes and surface layers up to 1,000 Å thick using X-ray standing waves. Nature 354, 377–380 (1991). https://doi.org/10.1038/354377a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/354377a0

  • Springer Nature Limited

This article is cited by

Navigation