Skip to main content

Use of X-Ray and Neutron Scattering Methods with Volume Measurements to Determine Lipid Bilayer Structure and Number of Water Molecules/Lipid

  • Chapter
Membrane Hydration

Part of the book series: Subcellular Biochemistry ((SCBI,volume 71))

Abstract

In this chapter I begin with a historical perspective of membrane models, starting in the early twentieth century. As these membrane models evolved, so did experiments to characterize the structure and water content of purified lipid bilayers. The wide-spread use of the X-ray gravimetric, or Luzzati method, is critically discussed. The main motivation of the gravimetric technique is to determine the number of water molecules/lipid, nW, and then derive other important structural quantities, such as area/lipid, AL. Subsequent experiments from the Nagle/Tristram-Nagle laboratory using X-ray and neutron scattering, first determine AL and then calculate nW, using molecular lipid VL and water VW volumes. This chapter describes the details of our volume experiments to carefully measure VL. Our results also determine nW′, the steric water associated with the lipid headgroup, and how our calculated value compares to many literature values of tightly-associated headgroup water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DSC:

Differential scanning calorimetry

NMR:

Nuclear magnetic resonance

EPR:

Electron spin resonance

FTIR:

Fourier transform infrared resonance

Tm:

Main transition melting temperature

nW :

Number of waters/lipid

nW′:

Steric number of waters/lipid

AL :

Area/lipid

VL :

Molecular volume/lipid

VW :

Molecular volume/water

MLVs:

Multilamellar vesicles

ULVs:

Unilamellar vesicles

D, D-space:

X-ray lamellar D-spacing

d, d-space:

X-ray wide-angle chain spacing

η:

Fluctuation parameter

KC :

Bending modulus

B:

Bulk modulus

un :

Vertical displacement

I(qz):

X-ray intensity

|F(qz)|:

Form factor

MD simulation:

Molecular dynamics simulation

2DC :

Hydrocarbon thickness

DB :

Bilayer thickness

DH′:

Headgroup thickness

interdig.:

Interdigitated

DPPC:

Dipalmitoylphosphatidylcholine

DSPC:

Distearoylphosphatidylcholine

DHPC:

Dihexadecanoyl-phosphatidylcholine

DLPE:

Dilauroylphosphatidylethanolamine

DMPC:

Dimyristoylphosphatidylcholine

DMPE:

Dimyristoylphosphatidylethanolamine

DLPC:

Dilauroylphosphatidylcholine

DOPC:

Dioleoylphosphatidylcholine

DOPS:

Dioleoylphosphatidylserine

EggPC:

Egg phosphatidylcholine

POPC:

Palmitoyloleoylphosphatidylcholine

SOPC:

Stearoyloleoylphosphatidylcholine

diC22:1PC:

Dierucoylphosphatidylcholine

18:0:22:5PC:

Stearoyldocosapentaenoylphosphatidylcholine

18:0-22:6PC:

Stearoyldocosahexaenoylphosphatidylcholine

diphytanoylPC:

Diphytanoylphosphatidylcholine

DLPG:

Dilauroylphosphatidylglycerol

DMPG:

Dimyristoylphosphatidylglycerol

POPG:

Palmitoyloleoylphosphatidylglycerol

SOPG:

Stearoyloleoylphosphatidylglycerol

DOPG:

Dioleoylphosphatidylglycerol

TMCL:

Tetramyristoylcardiolipin

DMPS:

Dimyristoylphosphatidylserine

References

  • Bach D, Miller IR (1998) Hydration of phospholipid bilayers in the presence and absence of cholesterol. Biochim Biophys Acta 1368(2):216–224

    Article  CAS  PubMed  Google Scholar 

  • Binder H, Kohlstrunk B, Heerklotz HH (1999) Hydration and lyotropic melting of amphiphilic molecules: a thermodynamic study using humidity titration calorimetry. J Colloid Interface Sci 220(2):235–249

    Article  CAS  PubMed  Google Scholar 

  • Boscia AL, Akabori K, Benamram Z, Michel JA, Jablin MS, Steckbeck JD, Montelaro RC, Nagle JF, Tristram-Nagle S (2013) Membrane structure correlates to function of LLP2 on the cytoplasmic tail of HIV-1 gp41 protein. Biophys J 105(3):657–666

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boscia AL, Treece BW, Mohammadyani D, Klein-Seetharaman J, Braun AR, Wassenaar TA, Klosgen B, Tristram-Nagle S (2014) X-ray structure, thermodynamics, elastic properties and MD simulations of cardiolipin/dimyristoylphosphatidylcholine mixed membranes. Chem Phys Lipids 178:1–10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bronshteyn VL, Steponkus PL (1993) Calorimetric studies of freeze-induced dehydration of phospholipids. Biophys J 65(5):1853–1865

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Buldt G, Gally HU, Seelig J, Zaccai G (1979) Neutron-diffraction studies on phosphatidylcholine model membranes. 1. Head group conformation. J Mol Biol 134(4):673–691

    Article  CAS  PubMed  Google Scholar 

  • Caillé A (1972) X-ray scattering by smectic-A crystals. CR Acad Sci Paris Sér B 274:891–893

    Google Scholar 

  • Channareddy S, Jose SS, Janes N (1997) Direct determination of hydration in the lamellar to inverted hexagonal transition of phosphatidylethanolamine. J Am Chem Soc 119:2345–2347

    Article  CAS  Google Scholar 

  • Chu N, Kučerka N, Liu YF, Tristram-Nagle S, Nagle JF (2005) Anomalous swelling of lipid bilayer stacks is caused by softening of the bending modulus. Phys Rev E 71(4):041904

    Article  Google Scholar 

  • Crowe LM, Spargo BJ, Ioneda T, Beaman BL, Crowe JH (1994) Interaction of cord factor (alpha, alpha′-trehalose-6,6′-dimycolate) with phospholipids. Biochim Biophys Acta Biomembr 1194:53–60

    Article  CAS  Google Scholar 

  • Danielli JF, Davson H (1935) A contribution to the theory of permeability of thin films. J Cell Comp Physiol 5(4):495–508

    Article  CAS  Google Scholar 

  • de Gennes PG, Prost J (1993) The physics of liquid crystals, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Dufourcq P, Louis H, Dandre F, Lavie J, Bonnet J, Lamaziere JM (1997) Phenotypic modification of arterial smooth muscle cells in response to medial dissection. Coron Artery Dis 8(3–4):163–170

    Article  CAS  PubMed  Google Scholar 

  • Eldho NV, Feller SE, Tristram-Nagle S, Polozov IV, Gawrisch K (2003) Polyunsaturated docosahexaenoic vs docosapentaenoic acid – differences in lipid matrix properties from the loss of one double bond. J Am Chem Soc 125(21):6409–6421

    Article  CAS  PubMed  Google Scholar 

  • Finer EG, Darke A (1974) Phospholipid hydration studied by deuteron magnetic resonance spectroscopy. Chem Phys Lipids 12(1):1–16

    Article  CAS  PubMed  Google Scholar 

  • Frye LD, Edidin M (1970) The rapid intermixing of cell surface antigens after formation of mouse-human heterokaryons. J Cell Sci 7(2):319–335

    CAS  PubMed  Google Scholar 

  • Gallova J, Uhrikova D, Kučerka N, Teixeira J, Balgavy P (2008) Hydrophobic thickness, lipid surface area and polar region hydration in monounsaturated diacylphosphatidylcholine bilayers: SANS study of effects of cholesterol and beta-sitosterol in unilamellar vesicles. Biochim Biophys Acta 1778(11):2627–2632

    Article  CAS  PubMed  Google Scholar 

  • Gawrisch K, Richter W, Mops A, Balgavy P, Arnold K, Klose G (1985) The influence of water concentration on the structure of egg-yolk phospholipid water dispersions. Stud Biophys 108(1):5–16

    CAS  Google Scholar 

  • Gorter E, Grendel F (1925) On bimolecular layers of lipoids on the chromocytes of the blood. J Exp Med 41(4):439–443

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gouliaev N, Nagle JF (1998) Simulations of interacting membranes in the soft confinement regime. Phys Rev Lett 81(12):2610–2613

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grdadolnik J, Hadzi D (1994) Conformational effects of metal salt binding to the polar head of phosphatidylcholines investigated by FTIR spectroscopy. Chem Phys Lipids 65:121–132

    Article  Google Scholar 

  • Greenwood AI, Pan JJ, Mills TT, Nagle JF, Epand RM, Tristram-Nagle S (2008) CRAC motif peptide of the HIV-1 gp41 protein thins SOPC membranes and interacts with cholesterol. Biochim Biophys Acta Biomembr 1778(4):1120–1130

    Article  CAS  Google Scholar 

  • Guinier A (1963) X-ray diffraction in crystals, imperfect crystals, and amorphous bodies. W. H. Freeman, San Francisco

    Google Scholar 

  • Guler SD, Ghosh DD, Pan JJ, Mathai JC, Zeidel ML, Nagle JF, Tristram-Nagle S (2009) Effects of ether vs. ester linkage on lipid bilayer structure and water permeability. Chem Phys Lipids 160(1):33–44

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hallinen KM, Tristram-Nagle S, Nagle JF (2012) Volumetric stability of lipid bilayers. Phys Chem Chem Phys 14(44):15452–15457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hosemann R, Bagchi SN (1962) Direct analysis of diffraction by matter. North-Holland, Amsterdam

    Google Scholar 

  • Hristova K, White SH (1998) Determination of the hydrocarbon core structure of fluid dioleoylphosphocholine (DOPC) bilayers by x-ray diffraction using specific bromination of the double-bonds: effect of hydration. Biophys J 74(5):2419–2433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jendrasiak GL, Hasty JH (1974) The hydration of phospholipids. Biochim Biophys Acta 337(1):79–91

    Article  CAS  PubMed  Google Scholar 

  • Katsaras J (1998) Adsorbed to a rigid substrate, dimyristoylphosphatidylcholine multibilayers attain full hydration in all mesophases. Biophys J 75(5):2157–2162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klose G, Konig B, Meyer HW, Schulze G, Degovics G (1988) Small-angle X-ray-scattering and electron-microscopy of crude dispersions of swelling lipids and the influence of the morphology on the repeat distance. Chem Phys Lipids 47(3):225–234

    Article  CAS  Google Scholar 

  • Koenig BW, Strey HH, Gawrisch K (1997) Membrane lateral compressibility determined by NMR and X-ray diffraction: effect of acyl chain polyunsaturation. Biophys J 73(4):1954–1966

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kučerka N, Kiselev MA, Balgavy P (2004) Determination of bilayer thickness and lipid surface area in unilamellar dimyristoylphosphatidylcholine vesicles from small-angle neutron scattering curves: a comparison of evaluation methods. Eur Biophys J Biophys 33(4):328–334

    Article  Google Scholar 

  • Kučerka N, Liu YF, Chu NJ, Petrache HI, Tristram-Nagle ST, Nagle JF (2005a) Structure of fully hydrated fluid phase DMPC and DLPC lipid bilayers using X-ray scattering from oriented multilamellar arrays and from unilamellar vesicles. Biophys J 88(4):2626–2637

    Article  PubMed Central  PubMed  Google Scholar 

  • Kučerka N, Tristram-Nagle S, Nagle JF (2005b) Structure of fully hydrated fluid phase lipid bilayers with monounsaturated chains. J Membr Biol 208(3):193–202

    Article  PubMed  Google Scholar 

  • Kučerka N, Tristram-Nagle S, Nagle JF (2006) Closer look at structure of fully hydrated fluid phase DPPC bilayers. Biophys J 90(11):L83–L85

    Article  PubMed Central  PubMed  Google Scholar 

  • Kučerka N, Nagle JF, Sachs JN, Feller SE, Pencer J, Jackson A, Katsaras J (2008) Lipid bilayer structure determined by the simultaneous analysis of neutron and x-ray scattering data. Biophys J 95(5):2356–2367

    Article  PubMed Central  PubMed  Google Scholar 

  • Ladbrook BD, Williams RM, Chapman D (1968) Studies on lecithin-cholesterol-water interactions by differential scanning calorimetry and X-ray diffraction. Biochim Biophys Acta 150(3):333–340

    Article  Google Scholar 

  • Lairion F, Filler R, Disalvo EA (2002) Reversed micelles as model systems to study interfacial properties of lipid bilayers. Colloid Surf B 25(4):369–371

    Article  CAS  Google Scholar 

  • Levine YK (1973) X-ray diffraction studies of membranes. Prog Surf Sci 3:279–352

    Article  CAS  Google Scholar 

  • Lewis BA, Engelman DM (1983) Lipid bilayer thickness varies linearly with acyl chain-length in fluid phosphatidylcholine vesicles. J Mol Biol 166(2):211–217

    Article  CAS  PubMed  Google Scholar 

  • Liu YF, Nagle JF (2004) Diffuse scattering provides material parameters and electron density profiles of biomembranes. Phys Rev E 69(4):040901

    Article  Google Scholar 

  • Lyatskaya Y, Liu YF, Tristram-Nagle S, Katsaras J, Nagle JF (2001) Method for obtaining structure and interactions from oriented lipid bilayers. Phys Rev E 63(1):011907

    Article  CAS  Google Scholar 

  • Mcintosh TJ, Simon SA (1986) Area per molecule and distribution of water in fully hydrated dilauroylphosphatidylethanolamine bilayers. Biochemistry 25(17):4948–4952

    Article  CAS  PubMed  Google Scholar 

  • Mendelsohn R, Davies MA, Schuster HF, Xu ZC, Bittman R (1991) Cd2 rocking modes as quantitative infrared probes of one-bond, 2-bond, and 3-bond conformational disorder in dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylcholine cholesterol mixtures. Biochemistry 30(35):8558–8563

    Article  CAS  PubMed  Google Scholar 

  • Miller IR, Bach D, Wachtel EJ, Eisenstein M (2002) Interrelation between hydration and interheadgroup interaction in phospholipids. Bioelectrochemistry 58(2):193–196

    Article  CAS  PubMed  Google Scholar 

  • Mills TT, Toombes GES, Tristram-Nagle S, Smilgies DM, Feigenson GW, Nagle JF (2008) Order parameters and areas in fluid-phase oriented lipid membranes using wide angle x-ray scattering. Biophys J 95(2):669–681

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nagle JF (1976) Theory of lipid monolayer and bilayer phase-transitions – effect of headgroup interactions. J Membr Biol 27(3):233–250

    Article  CAS  PubMed  Google Scholar 

  • Nagle JF (1980) Theory of the main lipid bilayer phase transition. Annu Rev Phys Chem 31:157–195

    Article  CAS  Google Scholar 

  • Nagle JF, Tristram-Nagle S (2000) Structure of lipid bilayers. Biochim Biophys Acta Rev Biomembr 1469(3):159–195

    Article  CAS  Google Scholar 

  • Nagle JF, Wilkinson DA (1978) Lecithin bilayers – density measurements and molecular interactions. Biophys J 23(2):159–175

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nagle JF, Zhang RT, Tristram-Nagle S, Sun WJ, Petrache H, Suter RM (1996) X-ray structure determination of fully hydrated L(alpha) phase DPPC bilayers. Biophys J 70(2):1419–1431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pan J, Tristram-Nagle S, Kučerka N, Nagle JF (2008a) Temperature dependence of structure, bending rigidity, and bilayer interactions of dioleoylphosphatidylcholine bilayers. Biophys J 94(1):117–124

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pan JJ, Mills TT, Tristram-Nagle S, Nagle JF (2008b) Cholesterol perturbs lipid bilayers nonuniversally. Phys Rev Lett 100(19)

    Google Scholar 

  • Pan JJ, Tieleman DP, Nagle JF, Kučerka N, Tristram-Nagle S (2009a) Alamethicin in lipid bilayers: combined use of X-ray scattering and MD simulations. Biochim Biophys Acta Biomembr 1788(6):1387–1397

    Article  CAS  Google Scholar 

  • Pan JJ, Tristram-Nagle S, Nagle JF (2009b) Effect of cholesterol on structural and mechanical properties of membranes depends on lipid chain saturation. Phys Rev E 80(2):021931

    Article  Google Scholar 

  • Pan JJ, Heberle FA, Tristram-Nagle S, Szymanski M, Koepfinger M, Katsaras J, Kučerka N (2012) Molecular structures of fluid phase phosphatidylglycerol bilayers as determined by small angle neutron and X-ray scattering. Biochim Biophys Acta Biomembr 1818(9):2135–2148

    Article  CAS  Google Scholar 

  • Petrache HI, Gouliaev N, Tristram-Nagle S, Zhang RT, Suter RM, Nagle JF (1998a) Interbilayer interactions from high-resolution x-ray scattering. Phys Rev E 57(6):7014–7024

    Article  CAS  Google Scholar 

  • Petrache HI, Tristram-Nagle S, Nagle JF (1998b) Fluid phase structure of EPC and DMPC bilayers. Chem Phys Lipids 95(1):83–94

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Petrache HI, Tristram-Nagle S, Gawrisch K, Harries D, Parsegian VA, Nagle JF (2004) Structure and fluctuations of charged phosphatidylserine bilayers in the absence of salt. Biophys J 86(3):1574–1586

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pohle W, Selle C, Fritzsche H, Binder H (1998) Fourier transform infrared spectroscopy as a probe for the study of the hydration of lipid self-assemblies. I. Methodology and general phenomena. Biospectroscopy 4(4):267–280

    Article  CAS  PubMed  Google Scholar 

  • Raghunathan M, Zubovski Y, Venable RM, Pastor RW, Nagle JF, Tristram-Nagle S (2012) Structure and elasticity of lipid membranes with genistein and daidzein bioflavinoids using X-ray scattering and MD simulations. J Phys Chem B 116(13):3918–3927

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rand RP, Parsegian VA (1989) Hydration forces between phospholipid bilayers. Biochim Biophys Acta 988(3):351–376

    Article  CAS  Google Scholar 

  • Robertson JD (1960) The molecular structure and contact relationships of cell membranes. Prog Biophys Mol Biol 10:343–418

    CAS  PubMed  Google Scholar 

  • Salsbury NJ, Chapman D, Darke A (1972) Deuteron magnetic-resonance studies of water associated with phospholipids. Chem Phys Lipids 8(2):142–151

    Article  CAS  PubMed  Google Scholar 

  • Shchelokovskyy P, Tristram-Nagle S, Dimova R (2011) Effect of the HIV-1 fusion peptide on the mechanical properties and leaflet coupling of lipid bilayers. New J Phys 13:025004

    Article  PubMed Central  Google Scholar 

  • Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1(1):31–39

    Article  CAS  PubMed  Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175(4023):720–731

    Article  CAS  PubMed  Google Scholar 

  • Small DM (1967) Phase equilibria and structure of dry and hydrated egg lecithin. J Lipid Res 8(6):551–557

    CAS  PubMed  Google Scholar 

  • Sun W, Suter RM, Knewtson MA, Worthington CR, Tristram-Nagle S, Zhang R, Nagle JF (1994) Order and disorder in fully hydrated unoriented bilayers of gel-phase dipalmitoylphosphatidylcholine. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 49(5):4665–4676

    CAS  PubMed  Google Scholar 

  • Sun WJ, Tristram-Nagle S, Suter RM, Nagle JF (1996) Structure of gel phase saturated lecithin bilayers: temperature and chain length dependence. Biophys J 71(2):885–891

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Swart SP (1907) About the permeability of artificial lipid membranes for proferments. Biochem Z 6:358–365

    Google Scholar 

  • Tardieu A, Luzzati V, Reman FC (1973) Structure and polymorphism of the hydrocarbon chains of lipids: a study of lecithin-water phases. J Mol Biol 75(4):711–733

    Article  CAS  PubMed  Google Scholar 

  • Torbet J, Wilkins MHF (1976) X-Ray diffraction studies of lecithin bilayers. J Theor Biol 62(2):447–458

    Article  CAS  PubMed  Google Scholar 

  • Tristram-Nagle SA (2007) Preparation of oriented, fully hydrated lipid samples for structure determination using X-ray scattering. Methods Mol Biol 400:63–75

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tristram-Nagle S, Nagle JF (2004) Lipid bilayers: thermodynamics, structure, fluctuations, and interactions. Chem Phys Lipids 127(1):3–14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tristram-Nagle S, Nagle JF (2007) HIV-1 fusion peptide decreases bending energy and promotes curved fusion intermediates. Biophys J 93(6):2048–2055

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tristram-Nagle S, Yang CP, Nagle JF (1986) Thermodynamic studies of purple membrane. Biochim Biophys Acta 854(1):58–66

    Article  CAS  PubMed  Google Scholar 

  • Tristram-Nagle S, Wiener MC, Yang CP, Nagle JF (1987) Kinetics of the subtransition in dipalmitoylphosphatidylcholine. Biochemistry Us 26(14):4288–4294

    Article  CAS  Google Scholar 

  • Tristram-Nagle S, Zhang R, Suter RM, Worthington CR, Sun WJ, Nagle JF (1993) Measurement of chain tilt angle in fully hydrated bilayers of gel phase lecithins. Biophys J 64(4):1097–1109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tristram-Nagle S, Petrache HI, Nagle JF (1998) Structure and interactions of fully hydrated dioleoylphosphatidylcholine bilayers. Biophys J 75(2):917–925

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tristram-Nagle S, Liu YF, Legleiter J, Nagle JF (2002) Structure of gel phase DMPC determined by X-ray diffraction. Biophys J 83(6):3324–3335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tristram-Nagle S, Kim DJ, Akhunzada N, Kučerka N, Mathai JC, Katsaras J, Zeidel M, Nagle JF (2010) Structure and water permeability of fully hydrated diphytanoylPC. Chem Phys Lipids 163(6):630–637

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ulrich AS, Watts A (1994) Molecular response of the lipid headgroup to bilayer hydration monitored by H2-Nmr. Biophys J 66(5):1441–1449

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wiener MC, Tristram-Nagle S, Wilkinson DA, Campbell LE, Nagle JF (1988) Specific volumes of lipids in fully hydrated bilayer dispersions. Biochim Biophys Acta 938(2):135–142

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson DA, McIntosh TJ (1986) A subtransition in a phospholipid with a net charge, dipalmitoylphosphatidylglycerol. Biochemistry 25(2):295–298

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson DA, Nagle JF (1978) Differential dilatometer. Anal Biochem 84(1):263–271

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson DA, Nagle JF (1979) Dilatometric study of binary mixtures of phosphatidylcholines. Biochemistry 18(19):4244–4249

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson DA, Nagle JF (1981) Dilatometry and calorimetry of saturated phosphatidylethanolamine dispersions. Biochemistry 20(1):187–192

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson DA, Nagle JF (1982) Specific heats of lipid dispersions in single-phase regions. Biochim Biophys Acta 688(1):107–115

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson DA, Nagle JF (1984) Metastability in the phase behavior of dimyristoylphosphatidylethanolamine bilayers. Biochemistry 23(7):1538–1541

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson DA, Tirrell DA, Turek AB, McIntosh TJ (1987) Tris buffer causes acyl chain interdigitation in phosphatidylglycerol. Biochim Biophys Acta 905(2):447–453

    Article  CAS  PubMed  Google Scholar 

  • Yang CP, Nagle JF (1988) Phase transformations in lipids follow classical kinetics with small fractional dimensionalities. Phys Rev A 37(10):3993–4000

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Suter RM, Nagle JF (1994) Theory of the structure factor of lipid bilayers. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 50(6):5047–5060

    CAS  PubMed  Google Scholar 

  • Zhang R, Sun WJ, Tristram-Nagle S, Headrick RL, Suter RM, Nagle JF (1995) Critical fluctuations in membranes. Phys Rev Lett 74(14):2832–2835

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Tristram-Nagle S, Sun WJ, Headrick RL, Irving TC, Suter RM, Nagle JF (1996) Small-angle X-ray scattering from lipid bilayers is well described by modified Caillé theory but not by paracrystalline theory. Biophys J 70(1):349–357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to thank Ben Sauerwine for preparing the snapshot of fluctuating bilayers from the Monte Carlo simulation. Funding was from NIH GM 44976.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie Tristram-Nagle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tristram-Nagle, S. (2015). Use of X-Ray and Neutron Scattering Methods with Volume Measurements to Determine Lipid Bilayer Structure and Number of Water Molecules/Lipid. In: Disalvo, E. (eds) Membrane Hydration. Subcellular Biochemistry, vol 71. Springer, Cham. https://doi.org/10.1007/978-3-319-19060-0_2

Download citation

Publish with us

Policies and ethics