Skip to main content

Neutron Reflectivity as a Tool for Physics-Based Studies of Model Bacterial Membranes

  • Chapter
  • First Online:
Biophysics of Infection

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 915))

Abstract

The principles of neutron reflectivity and its application as a tool to provide structural information at the (sub-) molecular unit length scale from models for bacterial membranes are described. The model membranes can take the form of a monolayer for a single leaflet spread at the air/water interface, or bilayers of increasing complexity at the solid/liquid interface. Solid-supported bilayers constrain the bilayer to 2D but can be used to characterize interactions with antimicrobial peptides and benchmark high throughput lab-based techniques. Floating bilayers allow for membrane fluctuations, making the phase behaviour more representative of native membranes. Bilayers of varying levels of compositional accuracy can now be constructed, facilitating studies with aims that range from characterizing the fundamental physical interactions, through to the characterization of accurate mimetics for the inner and outer membranes of Gram-negative bacteria. Studies of the interactions of antimicrobial peptides with monolayer and bilayer models for the inner and outer membranes have revealed information about the molecular control of the outer membrane permeability, and the mode of interaction of antimicrobials with both inner and outer membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For this reason, it is convenient (and usual) to characterize a material's neutron optical properties by a scattering length density, \(\rho\).

  2. 2.

    The incoherent background is largely due to the presence of hydrogen, which has a very high incoherent cross-section, in the sample/sub-phase, which is unavoidable in biologically relevant samples; in solid/liquid experiments this can be minimized to some extent by using a low sub-phase volume, such as in the laminar flow cell illustrated in the right panel of Fig. 1.

  3. 3.

    At a fundamental level, the average (pseudo)potential experienced by the neutron is \(\bar{V} = \frac{{2\pi \hbar^{2} }}{m}\rho\). Since the momentum change in specular reflection is solely perpendicular to the interface, it is the force on the neutron perpendicular to the interface that is important in determining the reflectivity. Since the force is given by the gradient of the potential, it is clear why it is the gradient of the scattering length density profile that is important in determining the reflectivity. The same conclusion can be drawn in an explicit mathematical form by application of the Born approximation \(R(Q) = \frac{{16\pi^{2} }}{{Q^{4} }}\left| {\tilde{\rho }(Q)} \right|^{2}\), where \(\tilde{\rho }(Q) = \int_{-\infty}^{\infty } {\frac{d\rho (z)}{dz}\exp ( - iQz)dz}\) is the Fourier transform of the derivative of the scattering length density profile perpendicular to the interface.

References

  • Barker RD (2011) al-PC SAM approach to supported bilayers: Developing a novel model membrane system. PhD thesis, School of Chemistry, University of Bath

    Google Scholar 

  • Bello G, Bodin A, Lawrence MJ, Barlow D, Mason AJ, Barker RD, Harvey RD (2015) The influence of rough lipopolysaccharide structure on molecular interactions with mammalian antimicrobial peptides. BBA: Biomembranes 1858(2):197–209. doi:10.1016/j.bbamem.2015.11.007

    Article  Google Scholar 

  • Carr M (2015) Advancing our understanding of lipid bilayer interaction: a molecular dynamics study. PhD thesis, School of Physics and Astronomy, University of Edinburgh

    Google Scholar 

  • Charitat T, Bellet-Amalric E, Fragneto G, Graner F (1999) Adsorbed and free lipid bilayers at the solid-liquid interface. Eur Phys J B 8:583–593

    Article  CAS  Google Scholar 

  • Chen L, Gao L, Fang W, Golubovic L (2012) How the antimicrobial peptides kill bacteria: computational physics insights. Commun Comput Phys 11(3):709–725

    Article  Google Scholar 

  • Clifton LA, Sanders M, Kinane C, Arnold T, Edler KJ, Neylon C, Green RJ, Frazier RA (2012) The role of protein hydrophobicity in thionin-phospholipid interactions: a comparison of α1 and α2-purothionin adsorbed anionic phospholipid monolayers. PCCP 14:13569–13579

    Google Scholar 

  • Clifton LA, Skoda MWA, Daulton EL, Hughes AV, Le Brun AP, Lakey JH, Holt SA (2013) Asymmetric phospholipid: lipopolysaccharide bilayers; a gram-negative bacterial outer membrane mimic. J R Soc Interface 10(89):20130810

    Google Scholar 

  • Clifton LA, Holt SA, Hughes AV, Daulton EL, Arunmanee W, Frank H, Khalid S, Jefferies D, Charlton TR, Webster JRP, Kinane CJ, Lakey JH (2015a) An accurate in vitro model of the E. coli envelope. Angew Chem Int Ed 54(41):11952–11955

    Google Scholar 

  • Clifton LA, Skoda MWA, Le Brun AP, Ciesielski F, Kuzmenko I, Holt SA, Lakey JH (2015b) Effect of divalent cation removal on the structure of gram-negative bacterial outer membrane models. Langmuir 31(1):404–412. doi:10.1021/la504407v

    Article  CAS  PubMed  Google Scholar 

  • Fernandez DL, Le Brun AP, Lee TH, Bansal P, Aguilar MI, James M, Separovic F (2012a) Structural effects of the antimicrobial peptide maculatin 1.1 on supported lipid bilayers. Eur Biophys J

    Google Scholar 

  • Fernandez DL, Le Brun AP, Whitwell TC, Sani MA, James M, Separovic F (2012b) The antimicrobial peptide aurein 1.2 disrupts model membranes via the carpet mechanism. Phys Chem Chem Phys 14:15739–15751

    Google Scholar 

  • Fragneto G, Graner F, Charitat T, Dubos P, Bellet-Amalric E (2000) Interaction of the third helix of antennapedia homeodomain with a deposited phospholipid bilayer: a neutron reflectivity structural study. Langmuir 16(10):4581–4588

    Article  CAS  Google Scholar 

  • Fragneto G, Charitat T, Daillant J (2012) Floating lipid bilayers: models for physics and biology. Eur Biophys J 41:863–874

    Article  CAS  PubMed  Google Scholar 

  • Gidalevitz D, Ishitsuka Y, Muresan AS, Konvalov O, Waring AJ, Lehrer RI, Lee KYC (2003) Interaction of antimicrobial peptide protegrin with biomembranes. PNAS 100(11):6302–6307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinrich F, Lösche M (2014) Zooming in on disordered systems: neutron reflection studies of proteins associated with fluid membranes. Biochim Biophys Acta 1838:2341–2349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helfrich W (1978) Steric interaction of fluid membranes in multilayer systems. Z Naturforsch 33a:305–315

    Google Scholar 

  • Hughes AV, Goldar A, Gerstenberg MC, Roser SJ, Bradshaw JP (2002) A hybrid sam phospholipid approach to fabricating a free supported lipid bilayer. PCCP 4:2371–2378

    Article  CAS  Google Scholar 

  • Hughes AV, Howse JR, Dabkowska A, Jones RAL, Lawrence MJ, Roser SJ (2008) Floating lipid bilayers deposited in chemically grafted phosphatidylcholine surfaces. Langmuir 24:1989–1999

    Article  CAS  PubMed  Google Scholar 

  • Hughes AV, Holt SA, Daulton W, Soliakov A, Charlton TR, Roser SJ, Lakey JH (2014) High coverage fluid-phase floating bilayers supported by ω-thiolipid self-assembled monolayers. J R Soc Interface 11(20140):447

    Google Scholar 

  • Illya G, Deserno M (2008) Coarse-grained simulation studies of peptide-induced pore formation. Biophys J 95:4163–4173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jagalski V, Barker RD, Thygesen MB, Gotfryd K, Krüger MB, Shi L, Maric S, Bovet N, Moulin M, Haertlin M, Pomorski TG, Loland CJ, Cárdenas M (2015) Grafted biomembranes containing membrane proteins—the case of the leucine transporter. Soft Matter 11:7707–7711

    Article  CAS  PubMed  Google Scholar 

  • Jepson AK (2014) E. coli motility and growth: a biophysical study. PhD thesis, School of Physics, University of Edinburgh

    Google Scholar 

  • Jepson AK, Schwarz-Linek J, Ryan L, Ryadnov MG, Poon WCK (2016) What is the ‘minimum inhibitory concentration’ (MIC) of pexiganan acting on Escherichia coli? In: Leake MC (ed.), Biophysics of infection. A cautionary case study. Springer. doi: 10.1007/978-3-319-32189-9_4

    Google Scholar 

  • Junghans A, Watkins EB, Barker RD, Singh S, Smith HL, Pocivavsek L, Majewski J (2015) Analysis of biosurfaces by neutron reflectometry: from simple to complex interfaces. Biointerphases 10(019):014

    Google Scholar 

  • Le Brun AP, Clifton LA, Halbert CE, Lin B, Meron M, Holden PJ, Lakey JH, Holt SA (2013) Structural characterization of a model gram-negative bacterial surface using lipopolysaccharides from rough strains of escherichia coli. Biomacromolecules 14(6):2014–2022. doi:10.1021/bm400356m, URL http://dx.doi.org/10.1021/bm400356m, pMID: 23617615

    Google Scholar 

  • Majkrzak CF, Berk NF, Dura J, Satija SK, Karim A, Pedulla J, Deslattes RD (1998) Phse determination and inversion in specular neutron reflectometry. Phys B 248:338–342

    Article  CAS  Google Scholar 

  • Marrink SJ, de Vries AH, Tieleman DP (2009) Lipids on the move: simulations of membranes pores, domains, stalks and curves. Biochim Biophys Acta 1788:149–168

    Article  CAS  PubMed  Google Scholar 

  • McKinley LE (2015) Reports on 8-02-704 and 8-02-709. Technical report, Institut Laue Langevin

    Google Scholar 

  • Melo MN, Castanaho MARB (2012) The mechanism of action of antimicrobial peptides: lipid vesicles vs. bacteria. Front Immunol 3:1–4

    Article  Google Scholar 

  • Pabst G, Kucerka N, Nieh MP, Rheinstädter MC, Katsara J (2010) Applications of neutron and x-ray scattering to the study of biological model membranes. Chem Phys Lipids 163:460–479

    Article  CAS  PubMed  Google Scholar 

  • Schekhar P, Nanda H, Lösche M, Heinrich F (2011) Continuous distribution model for the investigation of complex molecular architectures near interfaces with scattering techniques. J Appl Phys 110(102):216

    Google Scholar 

  • Schneck E, Papp-Szabo E, Quinn BE, Konovalov OV, Beveridge TJ, Pink DA, Tanaka M (2009) Calcium ions induce collapse of charded o-side chains of lipopolysaccharides from pseudomonas aeruginosa. J R Soc Interface 6:S671–S678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneck E, Schubert T, Konovalov BE Quinn OV, Gutsmann T, Brandenburg K, Olivera RG, Pink DA, Tanaka M (2010) Quantitative determination of ion distributions in bacterial lipopolysaccharide membranes by grazing-incidence x-ray fluorescence. PNAS 107:9147–9151

    Google Scholar 

  • Titmuss S (2013) Report on 8-02-684. Technical report, Institut Laue Langevi

    Google Scholar 

  • Wacklin HP (2010) Neutron reflection from supported lipid membranes. Curr Opin Colloid Interface Sci 15:445–454

    Article  CAS  Google Scholar 

  • Woo HJ, Wallqvist A (2011) Spontaneous buckling of lipid bilayer and vesicle budding induced by antimicrobial peptide maganin 2: a coarse-grained simulation study. J Phys Chem B 115:8122–8129

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the STFC for the award of beamtime at ISIS (RB1220350) and the Institut Laue-Langevin (8-02-637/8-02-682/8-02-704), and the EPSRC for a studentship to Laura McKinley (EP/L504956/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Titmuss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barker, R.D., McKinley, L.E., Titmuss, S. (2016). Neutron Reflectivity as a Tool for Physics-Based Studies of Model Bacterial Membranes. In: Leake, M. (eds) Biophysics of Infection. Advances in Experimental Medicine and Biology, vol 915. Springer, Cham. https://doi.org/10.1007/978-3-319-32189-9_16

Download citation

Publish with us

Policies and ethics