Skip to main content
Log in

Nonspecular X-Ray Scattering from a Planar Phospholipid Multilayer

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Reflectometry and nonspecular (diffuse) X-ray scattering data are used to refine the structure parameters of planar multilayer films of saturated DPPC and DSPC phospholipids with thickness of about 400 Å formed on the surface of an aqueous suspension of silica nanoparticles about 27 nm in diameter. A consistent analysis of the scattering data shows that the hydrosol–lipid film–air structure consists of a monolayer of nanoparticles, a lamellar lipid layer, and an approximately half-filled (loose) phospholipid monolayer at the air interface. Model electron concentration profiles indicate the hydration of the lamellar structure at a level of about 6 H2O molecules per lipid. In this case, water and Na+ cations are localized in the region of phosphocholine groups, which is in agreement with the results of molecular dynamics calculations of other authors. The observed roughness of the interfaces between lipid layers is at least 5 Å and is indicative of the presence of a 3–6-Å-wide noncapillary-wave structure. In our opinion, one of the possible applications of the described technology is coating the concave surface of a rotating hydrosol liquid with a lipid multilayer in an X-ray deflecting device with a whispering gallery mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. X. Chen, S. Lenhert, M. Hirtz, N. Lu, H. Fuchs, and L. Chi, Acc. Chem. Res. 40, 393 (2007).

    Article  Google Scholar 

  2. O. Purrucker, A. Fortig, K. Ludtke, R. Jordan, and M. Tanaka, J. Am. Chem. Soc. 127, 1258 (2005).

    Article  Google Scholar 

  3. H. Kaur, S. Yadav, A. K. Srivastava, N. Singh, J. J. Schneider, Om. P. Sinha, V. V. Agrawal, and R. Srivastava, Sci. Rep. 6, 34095 (2016).

    Article  ADS  Google Scholar 

  4. I. Langmuir, J. Am. Chem. Soc. 39, 1848 (1917).

    Article  Google Scholar 

  5. K. B. Blodgett, J. Am. Chem. Soc. 57, 1007 (1935).

    Article  Google Scholar 

  6. K. B. Blodgett and I. Langmuir, Phys. Rev. 51, 964 (1937).

    Article  ADS  Google Scholar 

  7. I. R. Peterson, J. Phys. D 23, 379 (1990).

    Article  ADS  Google Scholar 

  8. N. A. Kotov, F. C. Meldrum, C. Wu, and J. H. M. Fendler, J. Phys. Chem. 98, 2735 (1994).

    Article  Google Scholar 

  9. A. M. Tikhonov, JETP Lett. 92, 356 (2010).

    Article  ADS  Google Scholar 

  10. A. M. Tikhonov, V. E. Asadchikov, and Yu. O. Volkov, JETP Lett. 102, 478 (2015).

    Article  ADS  Google Scholar 

  11. A. M. Tikhonov, V. E. Asadchikov, Yu. O. Volkov, B. S. Roshchin, I. S. Monakhov, and I. S. Smirnov, JETP Lett. 104, 873 (2016).

    Article  ADS  Google Scholar 

  12. L. I. Goray, V. E. Asadchikov, B. S. Roshchin, Yu. O. Volkov, and A. M. Tikhonov, OSA Continuum 2, 460 (2019).

    Article  Google Scholar 

  13. T. Graham, Philos. Trans. R. Soc. London 151, 183 (1861).

    Article  ADS  Google Scholar 

  14. J. W. Ryznar, Colloidal Chemistry: Theoretical and Applied, Ed. by J. B. Alexander (Reinhold, New York, 1946) Vol. 6.

    Google Scholar 

  15. V. E. Asadchikov, V. V. Volkov, Yu. O. Volkov, K. A. Dembo, I. V. Kozhevnikov, B. S. Roshchin, D. A. Frolov, and A. M. Tikhonov, JETP Lett. 94, 585 (2011).

    Article  ADS  Google Scholar 

  16. A. W. Adamson, Physical Chemistry of Surfaces (Wiley, New York, 1976).

    Google Scholar 

  17. M. L. Schlossman, D. Synal, Y. Guan, M. Meron, G. Shea-McCarthy, Z. Huang, A. Acero, S. M. Williams, S. A. Rice, and P. J. Viccaro, Rev. Sci. Instrum. 68, 4372 (1997).

    Article  ADS  Google Scholar 

  18. F. A. Akin, I. Jang, M. L. Schlossman, S. B. Sinnott, G. Zajac, E. R. Fuoco, M. B. J. Wijesundara, M. Li, A. M. Tikhonov, S. V. Pingali, A. T. Wroble, and L. Hanley, J. Phys. Chem. B 108, 9656 (2004).

    Article  Google Scholar 

  19. J. Koo, S. Park, S. Satija, A. M. Tikhonov, J. C. Sokolov, M. H. Rafailovich, and T. Koga, J. Colloid Interface Sci. 318, 103 (2008).

    Article  ADS  Google Scholar 

  20. S. V. Pingali, T. Takiue, G. Guangming, A. M. Tikhonov, N. Ikeda, M. Aratono, and M. L. Schlossman, J. Dispers. Sci. Technol. 27, 715 (2006).

    Article  Google Scholar 

  21. Y. Yoneda, Phys. Rev. 131, 2010 (1963).

    Article  ADS  Google Scholar 

  22. J. B. Bindell and N. Wainfan, J. Appl. Crystallogr. 3, 503 (1970).

    Article  Google Scholar 

  23. F. P. Buff, R. A. Lovett, and F. H. Stillinger, Phys. Rev. Lett. 15, 621 (1965).

    Article  ADS  Google Scholar 

  24. E. S. Wu and W. W. Webb, Phys. Rev. A 8, 2065 (1973).

    Article  ADS  Google Scholar 

  25. J. D. Weeks, J. Chem. Phys. 67, 3106 (1977).

    Article  ADS  Google Scholar 

  26. S. K. Sinha, E. B. Sirota, S. Garoff, and H. B. Stanley, Phys. Rev. B 38, 2297 (1988).

    Article  ADS  Google Scholar 

  27. A. Braslau, P. S. Pershan, G. Swislow, B. M. Ocko, and J. Als-Nielsen, Phys. Rev. A 38, 2457 (1988).

    Article  ADS  Google Scholar 

  28. D. K. Schwartz, M. L. Schlossman, E. H. Kawamoto, G. J. Kellogg, P. S. Pershan, and B. M. Ocko, Phys. Rev. A 41, 5687 (1990).

    Article  ADS  Google Scholar 

  29. D. M. Mitrinovic, S. M. Williams, and M. L. Schlossman, Phys. Rev. E 63, 021601 (2001).

    Article  ADS  Google Scholar 

  30. L. G. Parratt, Phys. Rev. 95, 359 (1954).

    Article  ADS  Google Scholar 

  31. G. Vignaud, A. Gibaud, J. Wang, S. K. Sinha, J. Daillant, G. Grubel, and Y. Gallot, J. Phys.: Condens. Matter 9, L125 (1997).

    ADS  Google Scholar 

  32. M. Li, A. M. Tikhonov, and M. L. Schlossman, Europhys. Lett. 58, 80 (2002).

    Article  ADS  Google Scholar 

  33. A. M. Tikhonov, JETP Lett. 105, 775 (2017).

    Article  ADS  Google Scholar 

  34. R. A. Campbell, Yu. Saaka, Ya. Shao, Yu. Gerelli, R. Cubitt, E. Nazaruk, D. Matyszewska, and M. J. Lawrence, J. Colloid Interface Sci. 531, 98 (2018).

    Article  ADS  Google Scholar 

  35. M. Delcea and C. A. Helm, Langmuir 35, 8519 (2019).

    Article  Google Scholar 

  36. J. K. Basu and M. K. Sanyal, Phys. Rep. 363, 1 (2002).

    Article  ADS  Google Scholar 

  37. A. M. Tikhonov, JETP Lett. 104, 309 (2016).

    Article  ADS  Google Scholar 

  38. D. M. Mitrinovic, A. M. Tikhonov, M. Li, Z. Huang, and M. L. Schlossman, Phys. Rev. Lett. 85, 582 (2000).

    Article  ADS  Google Scholar 

  39. M. G. Ruocco and G. G. Shipley, Biochem. Biophys. Acta 691, 309 (1982).

    Article  Google Scholar 

  40. D. M. Small, The Physical Chemistry of Lipids (Plenum, New York, 1986).

    Book  Google Scholar 

  41. A. Madsen, O. Konovalov, A. Robert, and G. Grubel, Phys. Rev. E 64, 061406 (2001).

    Article  ADS  Google Scholar 

  42. A. M. Tikhonov, J. Phys. Chem. B 110, 2746 (2006).

    Article  Google Scholar 

  43. A. M. Tikhonov, J. Chem. Phys. 130, 024512 (2009).

    Article  ADS  Google Scholar 

  44. S. A. Pandit and M. L. Berkowitz, Biophys. J. 82, 1818 (2002).

    Article  Google Scholar 

  45. M. Yi, H. Nymeyer, and H.-X. Zhou, Phys. Rev. Lett. 101, 038103 (2008).

    Article  ADS  Google Scholar 

  46. R. D. Porassoa and J. J. L. Cascalesa, Colloids Surf., B 73, 42 (2009).

    Article  Google Scholar 

  47. S. A. Pandit, D. Bostick, and M. L. Berkowitz, Biophys. J. 84, 3743 (2003).

    Article  Google Scholar 

  48. J. M. Crowley, Biophys. J. 13, 711 (1973).

    Article  ADS  Google Scholar 

  49. U. Zimmermann, G. Pilwat, and F. Riemann, Biophys. J. 14, 881 (1974).

    Article  Google Scholar 

  50. I. G. Abidor, V. B. Arakelyan, V. F. Pastushenko, M. R. Tarasevich, and L. V. Chernomordik, Dokl. Akad. Nauk SSSR 240, 733 (1978).

    Google Scholar 

  51. K. C. Melikov, V. A. Frolov, A. Shcherbakov, A. V. Samsonov, Yu. A. Chizmadzhev, and L. V. Chernomordik, Biophys. J. 80, 1829 (2001).

    Article  Google Scholar 

  52. M. Tarek, Biophys. J. 88, 4045 (2005).

    Article  ADS  Google Scholar 

  53. A. Braslau, M. Deutsch, P. S. Pershan, A. H. Weiss, J. Als-Nielsen, and J. Bohr, Phys. Rev. Lett. 54, 114 (1985).

    Article  ADS  Google Scholar 

  54. H. Mohwald, Ann. Rev. Phys. Chem. 41, 441 (1990).

    Article  ADS  Google Scholar 

  55. Yu. A. Ermakov, V. E. Asadchikov, B. S. Roschin, Yu. O. Volkov, D. A. Khomich, A. M. Nesterenko, and A. M. Tikhonov, Langmuir 35, 12326 (2019).

    Article  Google Scholar 

  56. D. G. Stearns, R. S. Rosen, and S. P. Vernon, Appl. Opt. 32, 6952 (1993).

    Article  ADS  Google Scholar 

Download references

Funding

The work at the National Synchrotron Light Source was supported by the US Department of Energy (contract no. DE-AC02-98CH10886). The work at the X19C beamline was supported by the ChemMatCARS National Synchrotron Resource, University of Chicago, University of Illinois at Chicago, and Stony Brook University. The theoretical part of research was supported by the Russian Science Foundation, project no. 18-12-00108.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Tikhonov.

Additional information

Translated by I. Nikitin

APPENDIX

APPENDIX

The profile ρ(z) corresponding to the multilayer structure shown in Fig. 7 can be parameterized as follows:

$$\rho (z) \approx {{P}_{1}} + {{P}_{2}} + {{P}_{3}} + \frac{1}{2}{{\rho }_{b}},$$
(A.1)

where the boundary with air is taken at z0 = 0.

The unfilled (loose) monolayer of lipid tails of thickness lt and density ρt at the interface with air is described by the first term

$${{P}_{1}} \approx \frac{1}{2}{{\rho }_{t}}{\text{erf}}\left( {\frac{z}{{\sigma \sqrt 2 }}} \right) + \frac{1}{2}({{\rho }_{2}} - {{\rho }_{t}}){\text{erf}}\left( {\frac{{z + {{l}_{t}}}}{{\sigma \sqrt 2 }}} \right),$$
(A.2)

where σ is the standard deviation of the position of the boundaries in the lipid structure from their nominal values.

A multilayer of N phospholipid bilayers is described by the periodic structure

$$\begin{gathered} {{P}_{2}} \approx \sum\limits_{j = 1}^{k = N} {\frac{1}{2}({{\rho }_{2}} - {{\rho }_{1}}){\text{erf}}\left( {\frac{{z + {{z}_{j}} - 2{{l}_{1}}}}{{\sigma \sqrt 2 }}} \right)} \\ + \frac{1}{2}({{\rho }_{p}} - {{\rho }_{2}}){\text{erf}}\left( {\frac{{z + L}}{{\sigma \sqrt 2 }}} \right), \\ \end{gathered} $$
(A.3)

where l1 is the thickness of the layer with density ρ1 consisting of hydrocarbon chains, l2 is the thickness of the layer with density ρ2 formed by polar groups, zj = lt + jl is the period, l = 2(l1 + l2) is the thickness of the bilayer, L = zN + l2 is the total thickness of the lipid film, and ρp is the electron concentration in the nanoparticle monolayer. The boundaries of the lamellar structure in Fig. 7 are formed by layers of polar groups of lipid molecules and lie in the interval (–lt, ‒L).

The electron concentration in the monolayer of SiO2 nanoparticles adjacent to a lipid film is described by the third term

$$\begin{gathered} {{P}_{3}} \approx \frac{1}{2}({{\rho }_{p}} - {{\rho }_{2}}){\text{erf}}\left( {\frac{{z + L}}{{{{\sigma }_{p}}\sqrt 2 }}} \right) \\ + \frac{1}{2}({{\rho }_{b}} - {{\rho }_{p}}){\text{erf}}\left( {\frac{{z + L + D}}{{{{\sigma }_{p}}\sqrt 2 }}} \right), \\ \end{gathered} $$
(A.4)

where D is the thickness of the monolayer of nanoparticles with ρp and σp is the standard deviation of the position of its boundaries from their nominal values ‒L and –(L + D).

Since σp ≫ σ, in a consistent analysis of data, the contribution of the inhomogeneities P3 can be neglected. In this case, the structure factor Φ(q) of the film has the following form:

$$\Phi \approx {{\Phi }_{1}} + {{\Phi }_{2}}.$$
(A.5)

The loose monolayer of lipid tails corresponds to

$${{\Phi }_{1}}(q) \approx \frac{{\exp ( - {{\sigma }^{2}}{{q}^{2}}{\text{/}}2)}}{{{{\rho }_{b}}}}[{{\rho }_{t}} + ({{\rho }_{2}} - {{\rho }_{t}})\exp ( - iq{{l}_{t}})].$$
(A.6)

The structure factor of a multilayer of N bilayers is

$$\begin{gathered} {{\Phi }_{2}}(q) \approx \frac{{\exp ( - {{\sigma }^{2}}{{q}^{2}}{\text{/}}2)}}{{{{\rho }_{b}}}} \\ \times \sum\limits_{j = 1}^N {({{\rho }_{1}} - {{\rho }_{2}})[1 - \exp (2iq{{l}_{1}})]\exp ( - iq{{z}_{j}})} \\ + \frac{{\exp ( - {{\sigma }^{2}}{{q}^{2}}{\text{/}}2)}}{{{{\rho }_{b}}}}({{\rho }_{p}} - {{\rho }_{2}})\exp ( - iqL). \\ \end{gathered} $$
(A.7)

Note that the model of the lamellar structure is in good agreement with the spatial resolution of the available experimental data (2π/\(q_{z}^{{{\text{max}}}}\) ≈ 10 Å). The use of more complex models leads to a significant increase in ambiguity in determining the values of their parameters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhonov, A.M. Nonspecular X-Ray Scattering from a Planar Phospholipid Multilayer. J. Exp. Theor. Phys. 131, 714–722 (2020). https://doi.org/10.1134/S1063776120100088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120100088

Navigation