Skip to main content
Log in

Effect of Cisplatin-Induced Acute Renal Failure on Bioavailability and Intestinal Secretion of Quinolone Antibacterial Drugs in Rats

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The aim of this study was to clarify the effects of renal failure on intestinal secretion of quinolone antibacterial drugs.

Methods. Pharmacokinetics of grepafloxacin, levofloxacin, and ciprofloxacin in cisplatin-induced acute renal failure (ARF) rats were evaluated, and intestinal and biliary clearance studies were examined. Transport experiments using culture cells were performed.

Results. The bioavailability of grepafloxacin in ARF rats was 1.2-fold higher than that in normal rats. On the other hand, the bioavailability of ciprofloxacin in ARF rats was markedly decreased to half of that in normal rats, and that of levofloxacin was not changed. Intestinal clearance of grepafloxacin in ARF rats was 75% of that in normal rats, whereas that of ciprofloxacin was 1.4-fold higher than in normal rats, and that of levofloxacin was comparable between normal and ARF rats. Transport experiments using P-glycoprotein-expressing LLC-GA5-COL150 cells and human intestinal Caco-2 cells suggested that grepafloxacin and levofloxacin were substrates of P-glycoprotein and that ciprofloxacin was not, and that intestinal secretion of ciprofloxacin was mediated by a specific transport system distinct from organic cation and anion transporters and multidrug resistance-associated protein 2.

Conclusions. Cisplatin-induced ARF differentially modulated the bioavailability and intestinal secretion of quinolones in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

references

  1. J. S. Wolfson and D. C. Hooper. Fluoroquinolone antibacterial agents. Clin. Microbiol. Rev. 2:378-424 (1989).

    Google Scholar 

  2. F. Sörgel, U. Jaehde, K. G. Naber, and U. Stephan. Pharmacokinetics disposition of quinolones in human body fluids and tissues. Clin. Pharmacokinet. 16(Suppl. 1):5-24 (1989).

    Google Scholar 

  3. C. Efthymiopoulos, S. L. Bramer, and A. Maroli. Pharmacokinetics of grepafloxacin after oral administration of single and repeat doses in healthy young males. Clin. Pharmacokinet. 33(Suppl. 1):1-8 (1997).

    Google Scholar 

  4. D. N. Fish and A. T. Chow. The clinical pharmacokinetics of levofloxacin. Clin. Pharmacokinet. 32:101-119 (1997).

    Google Scholar 

  5. F. Sörgel, K. G. Naber, U. Jaehde, A. Reiter, R. Seelman, and G. Sigl. Gastrointestinal secretion of ciprofloxacin. Am. J. Med. 87:62S-65S (1989).

    Google Scholar 

  6. G. R. Granneman, R. Braeckman, J. Kraut, S. Shupien, and J. C. Craft. Temafloxacin pharmacokinetics in subject with normal and impaired renal function. Antimicrob. Agents Chemother. 35:2345-2351 (1991).

    Google Scholar 

  7. H. Yamaguchi, I. Yano, Y. Hashimoto, and K. Inui. Secretory mechanisms of grepafloxacin and levofloxacin in the human intestinal cell line Caco-2. J. Pharmacol. Exp. Ther. 295:360-366 (2000).

    Google Scholar 

  8. K. Naruhashi, I. Tamai, N. Inoue, H. Muraoka, Y. Sai, N. Suzuki, and A. Tsuji. Active intestinal secretion of new quinolone antimicrobials and the partial contribution of P-glycoprotein. J. Pharm. Pharmacol. 53:699-709 (2001).

    Google Scholar 

  9. M. E. Cavet, M. West, and N. L. Simmons. Fluoroquinolone (ciprofloxacin) secretion by human intestinal epithelial (Caco-2) cells. Br. J. Pharmacol. 121:1567-1578 (1997).

    Google Scholar 

  10. N. M. Griffiths, B. H. Hirst, and N. L. Simmons. Active intestinal secretion of the fluoroquinolone antibacterials ciprofloxacin, norfloxacin and pefloxacin; a common secretory pathway? J. Pharmacol. Exp. Ther. 269:496-502 (1994).

    Google Scholar 

  11. S. Dautrey, K. Felice, A. Petiet, B. Lacour, C. Carbon, and R. Farinotti. Active intestinal elimination of ciprofloxacin in rats: modulation by different substrates. Br. J. Pharmacol. 127:1728-1734 (1999).

    Google Scholar 

  12. J. Fabre and L. Balant. Renal failure, drug pharmacokinetics and drug action. Clin. Pharmacokinet. 1:99-120 (1976).

    Google Scholar 

  13. H. Katayama, J. Fujiwara, M. Yasuhara, K. Okumura, and R. Hori. Increased availability of propranolol in rats with uranyl nitrate-induced acute renal failure. J. Pharmacobiodyn. 7:536-544 (1984).

    Google Scholar 

  14. H. Okabe, Y. Hashimoto, and K. Inui. Pharmacokinetics and bioavailability of tacrolimus in rats with experimental renal dysfunction. J. Pharm. Pharmacol. 52:1467-1472 (2000).

    Google Scholar 

  15. W. J. Tilstone and A. Fine. Furosemide kinetics in renal failure. Clin. Pharmacol. Ther. 23:644-650 (1978).

    Google Scholar 

  16. R. Rohwedder, T. Bergan, S. B. Thorsteinsson, and H. Scholl. Transintestinal elimination of ciprofloxacin. Chemotherapy 36:77-84 (1990).

    Google Scholar 

  17. S. Dautrey, L. Rabbaa, D. Laouari, B. Lacour, C. Carbon, and R. Farinotti. Influence of renal failure on intestinal clearance of ciprofloxacin in rats. Antimicrob. Agents Chemother. 43:678-680 (1999).

    Google Scholar 

  18. H. Akiyama, Y. Abe, M. Koike, K. Kyuushiki, N. Fujio, M. Odomi, F. Mukai, and K. Ohmori. Pharmacokinetics of grepafloxacin (I): absorption, distribution and excretion after oral administration of grepafloxacin in animals as determined by HPLC. Jpn. J. Chemother. 43(S-1):99-106 (1995).

    Google Scholar 

  19. T. Ohtomo, H. Saito, N. Inotsume, M. Yasuhara, and K. Inui. Transport of levofloxacin in a kidney epithelial cell line, LLC-PK1: interaction with organic cation transporters in apical and basolateral membranes. J. Pharmacol. Exp. Ther. 276:1143-1148 (1996).

    Google Scholar 

  20. K. Naora, Y. Katagiri, N. Ichikawa, M. Hayashibara, and K. Iwamoto. A possible reduction in the renal clearance of ciprofloxacin by fenbufen in rats. J. Pharm. Pharmacol. 42:704-707 (1990).

    Google Scholar 

  21. K. Inui, M. Yamamoto, and H. Saito. Transepithelial transport of oral cephalosporins by monolayers of intestinal cell line Caco-2: specific transport systems in the apical and basolateral membranes. J. Pharmacol. Exp. Ther. 261:195-201 (1992).

    Google Scholar 

  22. Y. Tanigawara, N. Okamura, M. Hirai, M. Yasuhara, K. Ueda, N. Kioka, T. Komano, and R. Hori. Transport of digoxin by human P-glycoprotein expressed in a porcine kidney epithelial cell line (LLC-PK1). J. Pharmacol. Exp. Ther. 263:840-845 (1992).

    Google Scholar 

  23. T. Ito, I. Yano, K. Tanaka, and K. Inui. Transport of quinolone antibacterial drugs by human P-glycoprotein expressed in a kidney epithelial cell line, LLC-PK1. J. Pharmacol. Exp. Ther. 282:955-960 (1997).

    Google Scholar 

  24. S. Masuda, H. Saito, H. Nonoguchi, K. Tomita, and K. Inui. mRNA distribution and membrane localization of the OAT-K1 organic anion transporter in rat renal tubules. FEBS Lett. 407:127-131 (1997).

    Google Scholar 

  25. H. Yamaguchi, I. Yano, H. Saito, and K. Inui. Pharmacokinetic role of P-glycoprotein in oral bioavailability and intestinal secretion of grepafloxacin in vivo. J. Pharmacol. Exp. Ther. 300:1063-1069 (2002).

    Google Scholar 

  26. K. Naruhashi, I. Tamai, N. Inoue, H. Muraoka, Y. Sai, N. Suzuki, and A. Tsuji. Involvement of multidrug resistance-associated protein 2 in intestinal secretion of grepafloxacin in rats. Antimicrob. Agents Chemother. 46:344-349 (2002).

    Google Scholar 

  27. C. Veau, C. Leroy, H. Banide, D. Auchère, S. Tardivel, R. Farinotti, and B. Lacour. Effect of chronic renal failure on the expression and function of rat intestinal P-glycoprotein in drug excretion. Nephrol. Dial. Transplant. 16:1607-1614 (2001).

    Google Scholar 

  28. D. Laouari, R. Yang, C. Veau, I. Blanke, and G. Friedlander. Two apical multidrug transporters, P-gp and MRP2, are differently altered in chronic renal failure. Am. J. Physiol. 280:F636-F645 (2001).

    Google Scholar 

  29. Z. H. Huang, T. Murakami, A. Okochi, R. Yumoto, J. Nagai, and M. Takano. Expression and function of P-glycoprotein in rats with glycerol-induced acute renal failure. Eur. J. Pharmacol. 406:453-460 (2000).

    Google Scholar 

  30. M. Demeule, M. Brossard, and R. Béliveau. Cisplatin induces renal expression of P-glycoprotein and canalicular multispecific organic anion transporter. Am. J. Physiol. 277:F832-F840 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichi Inui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaguchi, H., Yano, I., Saito, H. et al. Effect of Cisplatin-Induced Acute Renal Failure on Bioavailability and Intestinal Secretion of Quinolone Antibacterial Drugs in Rats. Pharm Res 21, 330–338 (2004). https://doi.org/10.1023/B:PHAM.0000016247.44589.f1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000016247.44589.f1

Navigation