Skip to main content
Log in

Effect of canagliflozin, a sodium glucose co-transporter 2 inhibitor, on cisplatin-induced nephrotoxicity in mice

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Canagliflozin is a sodium glucose co-transporter 2 (SGLT2) inhibitor that is currently available for the management of type 2 diabetes mellitus. The present study investigated the effect of canagliflozin on cisplatin (CP)-induced nephrotoxicity in mice. The animals were divided into four groups (n = 6). The first and second groups received normal saline (control) and intraperitoneal (i.p.) cisplatin (20 mg/kg) on day 7, respectively. The third and fourth groups were given a single intraperitoneal (i.p.) injection of CP (20 mg/kg) on day 7 and canagliflozin (10 mg/kg/day) and (30 mg/kg/day), for 10 days, respectively. At day 11, animals were anesthetized and blood collected and kidneys were removed. CP significantly increased the plasma urea, creatinine, cystatin C, and clusterin concentrations and neutrophil gelatinase-associated lipocalin (NGAL) activity. In addition, CP increased urinary albumin/creatinine ratio, N-acetyl-β-D-glucosaminidase (NAG) activity, and liver-type fatty acid-binding protein (L-FABP) concentrations and reduced creatinine clearance. CP also significantly increased the plasma concentration of inflammatory cytokines [plasma tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1beta (IL-1β)] and significantly reduced antioxidant indices [catalase, glutathione reductase (GR), and superoxide dismutase (SOD)]. Histopathologically, CP caused a remarkable renal damage compared with control. Canagliflozin significantly ameliorated CP-induced biochemical and histopathological changes. The protective effect of canagliflozin is most likely due to anti-inflammatory and antioxidant effects. Our results show that administration of canagliflozin reversed the biochemical and histopathological indices of CP-induced nephrotoxicity in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdelrahman AM, Al Salam S, AlMahruqi AS, Al husseni IS, Mansour MA, Ali BH (2010) N-acetylcysteine improves renal hemodynamics in rats with cisplatin-induced nephrotoxicity. J Appl Toxicol 30:15–21

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Wahab AF, Bamagous GA, Al-Harizy RM, ElSawy NA, Shahzad N, Ibrahim IA, Ghamdi SSA (2018) Renal protective effect of SGLT2 inhibitor dapagliflozin alone and in combination with irbesartan in a rat model of diabetic nephropathy. Biomed Pharmacother 103:59–66

    Article  CAS  PubMed  Google Scholar 

  • Al Suleimani YM, Abdelrahman AM, AlMahruqi AS, Alhseini IS, Tageldin MH, Mansour ME, Ali BH (2010) Interaction of nimesulide, a cyclooxygenase-2 inhibitor, with cisplatin in normotensive and spontaneously hypertensive rats. Food Chem Toxicol 48:139–144

    Article  CAS  PubMed  Google Scholar 

  • Ali BH, Al Moundhri MS (2006) Agents ameliorating or augmenting the nephrotoxicity of cisplatin and other platinum compounds: a review of some recent research. Food Chem Toxicol 44:1173–1183

    Article  CAS  PubMed  Google Scholar 

  • Ali BH, Abdelrahman AM, Al-Salam S, Sudhadevi M, AlMahruqi AS, Al-Husseni IS, Beegam S, Dhanasekaran S, Nemmar A, Al-Moundhri M (2011) The effect of sildenafil on cisplatin nephrotoxicity in rats. Basic Clin Pharmacol Toxicol 109:300–308

    Article  CAS  PubMed  Google Scholar 

  • Arany I, Safirstein RL (2003) Cisplatin nephrotoxicity. Semin Nephrol 23:460–464

    Article  CAS  PubMed  Google Scholar 

  • Baker WL, Smyth LR, Riche DM, Bourret EM, Chamberlin KW, White WB (2014) Effects of sodium-glucose co-transporter 2 inhibitors on blood pressure: a systematic review and meta-analysis. J Am Soc Hypertens 8:262–275

    Article  CAS  PubMed  Google Scholar 

  • Chang Y-K, Choi H, Jeong JY, Na K-R, Lee KW, Lim BJ, Choi DE (2016) Dapagliflozin, SGLT2 inhibitor, attenuates renal ischemia-reperfusion injury. PLoS ONE 11(7):e0158810. https://doi.org/10.1371/journal.pone.0158810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee PK, Yeboah MM, Solanki MH, Kumar G, Xue X, Pavlov VA, Al-Abed Y, Metz CN (2017) Activation of the cholinergic anti-inflammatory pathway by GTS-21 attenuates cisplatin-induced acute kidney injury in mice. PLoS ONE 12(11):e0188797. https://doi.org/10.1371/journal.pone.0188797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crona DJ, Faso A, Nishijima TF, McGraw KA, Galsky MD, Milowsky MI (2017) A systematic review of strategies to prevent cisplatin-induced nephrotoxicity. Oncologist 22:609–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heerspink HJL, Kosiborod M, Inzucchi SE, Cherney DZI (2018) Renoprotective effects of sodium-glucose cotransporter-2 inhibitors. Kidney Int. https://doi.org/10.1016/j.kint.2017.12.027

  • Huang YC, Tsai MS, Hsieh PC, Shih JH, Wang TS, Wang YC, Lin TH, Wang SH (2017) Galangin ameliorates cisplatin-induced nephrotoxicity by attenuating oxidative stress, inflammation and cell death in mice through inhibition of ERK and NF-kappaB signaling. Toxicol Appl Pharmacol 329:128–139

    Article  CAS  Google Scholar 

  • Ji W, Zhao M, Wang M, Yan W, Liu Y, Ren S, Lu J, Wang B, Chen L (2017) Effects of canagliflozin on weight loss in high-fat diet-induced obese mice. PLoS One 12(6):e0179960. https://doi.org/10.1371/journal.pone.0179960 eCollection 2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Long KE, Tang K, Padanilam BJ (2012) Poly (ADP- ribose) polymerase 1 activation is required for cisplatin nephrotoxicity. Kidney Int 82:193–203

    Article  CAS  PubMed  Google Scholar 

  • Kimoto Y, Nishinohara M, Sugiyama A, Haruna A, Takeuchi T (2013) Protective effect of lactoferrin on cisplatin-induced nephrotoxicity in rats. J Vet Med Sci 75:159–164

    Article  CAS  PubMed  Google Scholar 

  • Lovshin JA, Gilbert RE (2015) Are SGLT2 inhibitors reasonable antihypertensive drugs and renoprotective. Curr Hypertens Rep 17(6):551. https://doi.org/10.1007/s11906-015-0551-3

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Steiger S, Anders H-J (2017) Sodium glucose transporter-2 inhibition has no renoprotective effects on non-diabetic chronic kidney disease. Physiol Rep 5(7):e13228. https://doi.org/10.14814/phy2.13228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maliha G, Townsend RR (2015) SGLT2 inhibitors: their potential reduction in blood pressure. J Am Soc Hypertens 9:48–53

    Article  CAS  PubMed  Google Scholar 

  • Manohar S, Leung N (2018) Cisplatin nephrotoxicity: a review of the literature. J Nephrol 31:15–25

    Article  CAS  PubMed  Google Scholar 

  • Meng H, Fu G, Shen J, Shen K, Xu Z, Wang Y, Jin B, Pan H (2017) Ameliorative effect of daidzein on cisplatin-induced nephrotoxicity in mice via modulation of inflammation, oxidative stress, and cell death. Oxid Med Cell Longev 2017:3140680. https://doi.org/10.1155/2017/3140680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller RP, Tadagavadi RK, Ramesh G, Reeves WB (2010) Mechanisms of cisplatin nephrotoxicity. Toxins 2:2490–2518. https://doi.org/10.3390/toxins2112490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naznin F, Sakoda H, Okada T, Tsubouchi H, Waise TM, Arakawa K, Nakazato M (2017) Canagliflozin, a sodium glucose cotransporter 2 inhibitor, attenuates obesity-induced inflammation in the nodose ganglion, hypothalamus, and skeletal muscle of mice. Eur J Pharmacol 794:37–44

    Article  CAS  PubMed  Google Scholar 

  • Ojima A, Matsui T, Nishino Y, Nakamura N, Yamagishi S (2015) Empagliflozin, an inhibitor of sodium-glucose cotransporter 2 exerts anti-inflammatory and antifibrotic effects on experimental diabetic nephropathy partly by suppressing AGEs-receptor axis. Horm Metab Res 47:686–692

    Article  CAS  PubMed  Google Scholar 

  • Oliva RV, Bakris GL (2014) Blood pressure effects of sodium-glucose co-transport 2 (SGLT2) inhibitors. J Am Soc Hypertens 8:330–339

    Article  CAS  PubMed  Google Scholar 

  • Sharp CN, Siskind LJ (2017) Developing better mouse models to study cisplatin-induced kidney injury. Am J Physiol Renal Physiol 313:F835–F841

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheikh-Hamad D, Timmins K, Jalali Z (1997) Cisplatin-induced renal toxicity: possible reversal by N-acetylcysteine. J Am Soc Nephrol 8:1640–1645

    CAS  PubMed  Google Scholar 

  • Tahara A, Takasu T (2018a) Effects of the SGLT2 inhibitor ipragliflozin on various diabetic symptoms and progression of overt nephropathy in type 2 diabetic mice. Naunyn Schmiedeberg’s Arch Pharmacol 391:395–406

    Article  CAS  Google Scholar 

  • Tahara A, Takasu T (2018b) Prevention of progression of diabetic nephropathy by the SGLT2 inhibitor ipragliflozin in uninephrectomized type 2 diabetic mice. Eur J Pharmacol 830:68–75

    Article  CAS  PubMed  Google Scholar 

  • Tang L, Wu Y, Tian M, Sjöström CD, Johansson U, Peng XR, Smith DM, Huang Y (2017) Dapagliflozin slows the progression of the renal and liver fibrosis associated with type 2 diabetes. Am J Physiol Endocrinol Metab 313:E563–E576

    Article  CAS  PubMed  Google Scholar 

  • Tosaki T, Kamiya H, Himeno T, Kato Y, Kondo M, Toyota K, Nishida T, Shiroma M, Tsubonaka K, Asai H, Moribe M, Nakaya Y, Nakamura J (2017) Sodium-glucose co-transporter 2 inhibitors reduce the abdominal visceral fat area and may influence the renal function in patients with type 2 diabetes. Intern Med 56:597–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Li W, Wang L, Li W, Sun H, He X, Zhang J (2017) The protective effects of sika deer antler protein on cisplatin-induced nephrotoxicity. Cell Physiol Biochem 43:395–404

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Thai K, Kepecs DM, Gilbert RE (2016) Sodium-glucose linked cotransporter-2 inhibition does not attenuate disease progression in the rat remnant kidney model of chronic kidney disease. PLoS One 11(1):e0144640. https://doi.org/10.1371/journal.pone.0144640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ms. Halima Al Isaai for the help with the preparation of histopathology slides.

Funding

This study was supported by a grant from Sultan Qaboos University (IG/MED//PHAR/17/01).

Author information

Authors and Affiliations

Authors

Contributions

A.N. and B.A. conceived and designed research.

A.A., Y.S., and A.N.; B.A. participated in the interpretation of the results, writing and review of the manuscript.

A.S. performed the histological analysis.

M.A. conducted the experiments and analysis of data.

P.M. conducted the experiments and analysis of data.

All authors read and approved the manuscript.

Corresponding author

Correspondence to Aly M. Abdelrahman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelrahman, A.M., Al Suleimani, Y., Shalaby, A. et al. Effect of canagliflozin, a sodium glucose co-transporter 2 inhibitor, on cisplatin-induced nephrotoxicity in mice. Naunyn-Schmiedeberg's Arch Pharmacol 392, 45–53 (2019). https://doi.org/10.1007/s00210-018-1564-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-018-1564-7

Keywords

Navigation