Skip to main content

Advertisement

Log in

Mechanistic Study on the Effect of Renal Impairment on the Pharmacokinetics of Vildagliptin and its Carboxylic Acid Metabolite

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To clarify the mechanism of renal impairment leading to different degrees of increased plasma exposure to dipeptidyl peptidase 4 inhibitor vildagliptin and its major metabolite, M20.7.

Methods

The 5/6 nephrectomized (5/6 Nx) rat model, to simulate chronic renal failure (CRF) patients, combined with kidney slices and transporter studies in vitro were used to assess this pharmacokinetic differences.

Results

After intragastric administration to 5/6 Nx rats, vildagliptin showed increased plasma levels by 45.8%, and M20.7 by 7.51 times, which was similar to patients with severe renal impairment. The recovery rate of M20.7 in urine and feces increased by less than 20%, showing limited effect of renal impairment on vildagliptin metabolism. In vitro studies found M20.7 to be the substrate for organic anion transporter 3 (OAT3). However, the active uptake of M20.7 in renal slices showed no difference between the 5/6 Nx and normal rats. In OAT3 overexpressed cells, the protein-bound uremic toxins, 3-carboxy-4-methyl-5propyl-2-furanpropionate (CMPF), hippuric acid (HA) and indoxyl sulfate (IS), which accumulate in CRF patients, inhibited M20.7 uptake with IC50 values of 5.75, 29.0 and 69.5 μM respectively, far lower than plasma concentrations in CRF patients, and showed a mixed inhibition type.

Conclusions

The large increase in plasma exposure of M20.7 could be attributed to the accumulation of uremic toxins in CRF patients, which inhibited OAT3 activity and blocked renal excretion of M20.7, while vildagliptin, with high permeability, showed a slight increase in plasma exposure due to reduced glomerular filtration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Villhauer E. 1-[[(3-hydroxy-1-adamantyl) amino] acetyl]-2-cyano-(s)-pyrrolidine : a potent, selective, and orally bioavailable dipeptidyl peptidase iv inhibitor with antihyperglycemic properties. J Med Chem. 2003;46(13):2774–89.

    Article  CAS  Google Scholar 

  2. Mentlein R. Dipeptidyl-peptidase iv (cd26)--role in the inactivation of regulatory peptides. Regul Pept. 1999;85(1):9–24. https://doi.org/10.1016/s0167-0115(99)00089-0.

    Article  CAS  PubMed  Google Scholar 

  3. Kreymann B, Williams G, Ghatei MA, Bloom SR. Glucagon-like peptide-1 7-36: a physiological incretin in man. Lancet. 1987;2(8571):1300–4. https://doi.org/10.1016/s0140-6736(87)91194-9.

    Article  CAS  PubMed  Google Scholar 

  4. He H, Tran P, Yin H, Smith H, Batard Y, Wang L, et al. Absorption, metabolism, and excretion of [14c]vildagliptin, a novel dipeptidyl peptidase 4 inhibitor, in humans. Drug Metab Dispos. 2009;37(3):536–44. https://doi.org/10.1124/dmd.108.023010.

    Article  CAS  PubMed  Google Scholar 

  5. Kong FD, Pang XY, Zhao JH, Deng P, Zheng MY, Zhong DF, et al. Hydrolytic metabolism of cyanopyrrolidine dpp-4 inhibitors mediated by dipeptidyl peptidases. Drug Metab Dispos. 2019;47(3):238–48. https://doi.org/10.1124/dmd.118.084640.

    Article  CAS  PubMed  Google Scholar 

  6. He Y. Clinical pharmacokinetics and pharmacodynamics of vildagliptin. Clin Pharmacokinet. 2012;51(3):147–62.

    Article  CAS  Google Scholar 

  7. Scheen AJ. Pharmacokinetics of dipeptidylpeptidase-4 inhibitors. Diabetes Obes Metab. 2010;12(8):648–58. https://doi.org/10.1111/j.1463-1326.2010.01212.x.

    Article  CAS  PubMed  Google Scholar 

  8. Lukashevich V, Schweizer A, Shao Q, Groop PH, Kothny W. Safety and efficacy of vildagliptin versus placebo in patients with type 2 diabetes and moderate or severe renal impairment: a prospective 24-week randomized placebo-controlled trial. Diabetes Obes Metab. 2011;13(10):947–54. https://doi.org/10.1111/j.1463-1326.2011.01467.x.

    Article  CAS  PubMed  Google Scholar 

  9. Disease K. Improving global outcomes (kdigo) ckd work group. Kdigo 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Pol Arch Med Wewn. 2013;120(7–8):300–6.

    Google Scholar 

  10. Periclou A, Ventura D, Rao N, Abramowitz W. Pharmacokinetic study of memantine in healthy and renally impaired subjects. Clin Pharmacol Ther. 2006;79(1):134–43.

    Article  CAS  Google Scholar 

  11. Asconapé JJ. Use of antiepileptic drugs in hepatic and renal disease. Handb Clin Neurol. 2014;119(119):417–32.

    Article  Google Scholar 

  12. Zhong K, Li X, Xie C, Zhang Y, Zhong D, Chen X. Effects of renal impairment on the pharmacokinetics of morinidazole: uptake transporter-mediated renal clearance of the conjugated metabolites. Antimicrob Agents Chemother. 2014;58(7):4153–61. https://doi.org/10.1128/aac.02414-14.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kong F, Pang X, Zhong K, Guo Z, Li X, Zhong D, et al. Increased plasma exposures of conjugated metabolites of morinidazole in renal failure patients: a critical role of uremic toxins. Drug Metab Dispos. 2017;45(6):593–603. https://doi.org/10.1124/dmd.116.074492.

    Article  CAS  PubMed  Google Scholar 

  14. Chu X, Bleasby K, Chan GH, et al. The complexities of interpreting reversible elevated serum creatinine levels in drug development: does a correlation with inhibition of renal transporters exist? Drug Metab Dispos. 2016;44(9):1498.

    Article  CAS  Google Scholar 

  15. Vanholder R, De Smet R, Glorieux G, Argiles A, Baurmeister U, Brunet P, et al. Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int. 2003;63(5):1934–43. https://doi.org/10.1046/j.1523-1755.2003.00924.x.

    Article  CAS  PubMed  Google Scholar 

  16. Hsueh CH, Yoshida K, Zhao P, Meyer TW, Zhang L, Huang SM, et al. Identification and quantitative assessment of uremic solutes as inhibitors of renal organic anion transporters, oat1 and oat3. Mol Pharm. 2016;13(9):3130–40.

    Article  CAS  Google Scholar 

  17. Kearney BP, Yale K, Shah J, Zhong L, Flaherty JF. Pharmacokinetics and dosing recommendations of tenofovir disoproxil fumarate in hepatic or renal impairment. Clin Pharmacokinet. 2006;45(11):1115–24.

    Article  CAS  Google Scholar 

  18. Anderson S, Rennke HG, Brenner BM, Anderson S, Meyer TW, Rennke HG, et al. Control of glomerular hypertension limits glomerular injury in rats with reduced renal mass. J Clin Investig. 1985;76(2):612–9.

    Article  CAS  Google Scholar 

  19. Kikuchi K, Itoh Y, Tateoka R, Ezawa A, Murakami K, Niwa T. Metabolomic analysis of uremic toxins by liquid chromatography/electrospray ionization-tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2010;878(20):1662–8.

    Article  CAS  Google Scholar 

  20. Naud J, Michaud J, Beauchemin S, Hebert MJ, Roger M, Lefrancois S, et al. Effects of chronic renal failure on kidney drug transporters and cytochrome p450 in rats. Drug Metab Dispos. 2011;39(8):1363–9. https://doi.org/10.1124/dmd.111.039115.

    Article  CAS  PubMed  Google Scholar 

  21. Deguchi T, Nakamura M, Tsutsumi Y, Suenaga A, Otagiri M. Pharmacokinetics and tissue distribution of uraemic indoxyl sulphate in rats. Biopharm Drug Dispos. 2010;24(8):345–55.

    Article  Google Scholar 

  22. Kaplan MM, Utiger RD. Iodothyronine metabolism in liver and kidney homogenates from hyperthyroid and hypothyroid rats. Endocrinology. 1978;103(1):156–61. https://doi.org/10.1210/endo-103-1-156.

    Article  CAS  PubMed  Google Scholar 

  23. Han YH, Busler D, Hong Y, Tian Y, Chen C, Rodrigues AD. Transporter studies with the 3-o-sulfate conjugate of 17alpha-ethinylestradiol: assessment of human kidney drug transporters. Drug Metab Dispos. 2010;38(7):1064–71. https://doi.org/10.1124/dmd.109.031526.

    Article  CAS  PubMed  Google Scholar 

  24. Obatomi DK, Brant S, Anthonypillai V, Early DA, Bach PH. Optimizing preincubation conditions for precision-cut rat kidney and liver tissue slices: effect of culture media and antioxidants. Toxicol in Vitro. 1998;12(6):725–37. https://doi.org/10.1016/S0887-2333(98)00055-1.

    Article  CAS  PubMed  Google Scholar 

  25. Keller F, Maiga M, Neumayer HH, Lode H, Distler A. Pharmacokinetic effects of altered plasma protein binding of drugs in renal disease. Eur J Drug Metab Pharmacokinet. 1984;9(3):275–82.

    Article  CAS  Google Scholar 

  26. Reidenberg MM, Drayer DE. Alteration of drug-protein binding in renal disease. Clin Pharmacokinet. 1984;9(1 Supplement):18.

    Article  Google Scholar 

  27. FDA. Guidance for industry pharmacokinetics in patients with impaired renal function – study design, data analysis, and impact on dosing, U.S. Department of health and human services food and drug administration center for drug evaluation and research (cder). 2020.

  28. He YL, Kulmatycki K, Zhang YM, Zhou W, Reynolds C, Ligueros-Saylan M, et al. Pharmacokinetics of vildagliptin in patients with varying degrees of renal impairment. Int J Clin Pharmacol Ther. 2013;51(9):693–703. https://doi.org/10.5414/cp201885.

    Article  CAS  PubMed  Google Scholar 

  29. FDA. In vitro drug interaction studies —cytochrome p450 enzyme and transporter mediated drug interactions-guidance for industry. 2020.

  30. Dixon M. The determination of enzyme inhibitor constants. Biochem J. 1953;55(1):170–1. https://doi.org/10.1042/bj0550170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cornish-Bowden A. A simple graphical method for determining the inhibition constants of mixed, uncompetitive and non-competitive inhibitors. Biochem J. 1974;137(1):143–4.

    Article  CAS  Google Scholar 

  32. Ogilvie BW. Glucuronidation converts gemfibrozil to a potent, metabolism-dependent inhibitor of CYP2C8: implications for drug-drug interactions. Drug Metab Dispos. 2005;34(1):191–7.

    Article  Google Scholar 

  33. Bailey MJ, Dickinson RG. Acyl glucuronide reactivity in perspective: biological consequences. Chem Biol Interact. 2003;145(2):117–37. https://doi.org/10.1016/s0009-2797(03)00020-6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant 82073924). The authors thank Xiao-yan Pang for her assistance with the experiments.

Author information

Authors and Affiliations

Authors

Contributions

ZTG, FDK and XYC participated in research design; ZTG, FDK, NJX, ZDC and JFH performed experiments; ZTG and XYC wrote the manuscript.

Corresponding author

Correspondence to Xiaoyan Chen.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 355 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Kong, F., Xie, N. et al. Mechanistic Study on the Effect of Renal Impairment on the Pharmacokinetics of Vildagliptin and its Carboxylic Acid Metabolite. Pharm Res 39, 2147–2162 (2022). https://doi.org/10.1007/s11095-022-03324-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03324-9

Keywords

Navigation