Skip to main content
Log in

Timber Rattlesnakes (Crotalus horridus) Use Chemical Cues to Select Ambush Sites

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Chemicals left by organisms moving through the environment are used by other organisms to mediate interspecific interactions. Most studies of chemical eavesdropping focus on prey responding to chemical cues from predators,Despite the fact that chemical cues are frequently used by predators as a source of information about prey. Crotalus horridususes a foraging strategy that is widespread among sedentary predators: the snake chooses a site where it is likely to encounter prey and remains immobile for many hours. I investigated this ambush hunting behavior in captive-raised timber rattlesnakes and provide evidence that sit-and-wait predators may discriminate among prey chemical cues, even when they have no prior experience with the prey. Snakes explored chemical cues with chemosensory behaviors, and more frequently adopted a stereotyped ambush foraging posture toward chemical cues from prey sympatric with their population of origin than either allopatric prey or sympatric nonprey species that are eaten by other viperids. These results support the notion that intra- and interspecific variation in diet may be mediated proximally by innate recognition of cues from particular prey items. This system alsoDescribes a bioassay that may be used in the isolation and identification of prey-derived kairomones. Studies such as this can be used toDetermine more realistic parameters for models of predator–prey interaction and foraging behavior that involve secretive, less active predators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, S. J. 1978. Some effects of early experience on feeding responses in the common garter snake, Thamnophis sirtalis. Anim. Behav. 26:455–462.

    Google Scholar 

  • Arnold, S. J. 1981. The microevolution of feeding behavior, pp. 409–453, in A. Kamil and T. Sargent (eds.). Foraging Behavior: Ecology, Ethological, and Psychological Approaches. Garland STPM Press, New York.

    Google Scholar 

  • Bouskila, A. 2001. A habitat selection game of interactions between rodents and their predators. Ann. Zool. Fenn. 38:55–70.

    Google Scholar 

  • Brown, W. L., Eisner, T., and Whitaker, R. H. 1970. Allomones and kairomones: Transspecific chemical messengers. Bioscience 20:21–22.

    Google Scholar 

  • Burghardt, G. M. 1990. Chemically mediated predation in vertebrates, pp. 475–499, in D. McDonald D. Muller-Schwarze, and S. Natynzukf (eds.). Chemical Signals in Vertebrates 5. University Press, Oxford, UK.

    Google Scholar 

  • Burghardt, G. M. 1999. Plasticity of foraging behavior in garter snakes (Thamnophis sirtalis) reared on different diets. J. Comp. Psych. 12:277–285.

    Google Scholar 

  • Carroll, J. F. 2000. Responses of adult Ixodes scapularis(Acari: Ixodidae) to urine produced by white-tailedDeer of various reproductive conditions. J. Med. Entom. 37:472–475.

    Google Scholar 

  • Chiszar, D. and Scudder, K. M. 1980. Chemosensroy searching by rattlesnakes during predatory episodes, pp. 125–139, in D. Muller-Schwarze and R. M. Silverstein (eds.). Chemical Signals in Vertabrates and Aquatic Invertebrates. Plenum Press, New York.

    Google Scholar 

  • Chiszar, D., Lee, R., Smith, H., and Radcliffe, C. 1992. Searching behaviors by rattlesnakes following predatory strikes, pp. 369–382, in J. A. Campbell and E. D. Brodie, Jr. (eds.). Biology of the Pitvipers. Selva, Tyler, TX.

    Google Scholar 

  • Clark, R. W. 2002. Dietary composition of the timber rattlesnake, Crotalus horridus. J. Herpetol. 36:494–499.

    Google Scholar 

  • Cooper, W. E., Jr. 1995. Foraging mode, prey chemical discrimination, and phylogeny in lizards. Anim. Behav. 50:973–985.

    Google Scholar 

  • Cooper, W. E., Jr. 1998. Evaluation of swab and related tests as a bioassay for assessing responses by squamate reptiles to chemical stimuli. J. Chem. Ecol. 24:841–866.

    Google Scholar 

  • Cooper, W. E., Jr. and Burghardt, G. M. 1990. A comparative analysis of scoring methods for chemical discrimination of prey by squamate reptiles. J. Chem. Ecol. 16:45–65.

    Google Scholar 

  • Downes, S. 1999. Prey odor influences retreat-site selection by naive broadheaded snakes (Hoplocephalus bungaroides). J. Herpetol. 33:156–159.

    Google Scholar 

  • Duvall, D., Chiszar, D., Hayes, W. K., Leonhardt, J. K., and Goode, M. J. 1990. Chemical and behavioral ecology of foraging in prairie rattlesnakes (Crotalus viridis viridis). J. Chem. Ecol. 16:87–101.

    Google Scholar 

  • Finelli, C. M., Pentcheff, N. D., Zimmer, R. K., and Wethey, D. S. 2000. Physical constraints on ecological processes: A field test of odor-mediated foraging. Ecology 81:784–797.

    Google Scholar 

  • Graves, B. M. and Duvall, D. 1983. Occurrence and function of prairie rattlesnake mouth gaping in a non-feeding context. J. Exper. Zool. 227:471–474.

    Google Scholar 

  • Greene, H. W. 1992. The ecological and behavioral context for pitviper evolution, pp. 107–118, in J. A. Campbell and E. D. Brodie Jr. (eds.). Biology of the Pitvipers. Selva, Tyler, TX.

    Google Scholar 

  • Hall, E. R. 1981. The Mammals of North America. Wiley, New York.

    Google Scholar 

  • Halpern, M. and Kubie, J. L. 1984. The role of the ophidian vomeronasal system in species-typical behavior. Trends Neurosci. 7:472–477.

    Google Scholar 

  • Kats, L. E. and Dill, L. M. 1998. The scent ofDeath: Chemosensory assessment of predation risk by prey animals. Ecoscience 5:361–394.

    Google Scholar 

  • Keenlyne, K. D. and Beer, J. R. 1973. Food habits of Sistrurus catenatus catenatus. J. Herpetol. 7:382–384.

    Google Scholar 

  • Koivula, M. and Korpimaki, E. 2001. Do scent marks increase predation risk of microtine rodents? Oikos 95:275–281.

    Google Scholar 

  • Nishimura, K. 1991. Optimal patch residence time of a sit-and-wait forager. Behav. Ecol. 2:283–294

    Google Scholar 

  • Persons, M. H. and Rypstra, A. L. 2000. Preference for chemical cues associated with recent prey in the wolf spider Hogna helluo(Araneae: Lycosidae). Ethology 106:27–35.

    Google Scholar 

  • Reinert, H. K., Cundall, D., and Bushar, L. M. 1984. Foraging behavior of the timber rattlesnake, Crotalus horridus. Copeia 1984:976–981.

    Google Scholar 

  • Roth, E. D., May, P. G., and Farrell, T. M. 1999. Pigmy rattlesnakes use frog-derived chemical cues to select foraging sites. Copeia 1999:772–774.

    Google Scholar 

  • Savage, T. 1967. The diet of rattlesnakes and copperheads in the Great Smoky Mountains National Park. Copeia 1967:226–227.

    Google Scholar 

  • Schwenk, K. 1995. Of tongues and noses: Chemoreception in lizards and snakes. Trends Ecol. Evol. 10:7–12.

    Google Scholar 

  • Stowe, M. K., Turlings, T. C. J., Lougrin, J. H., Lewis, W. J., and Tumlinson, J. H. 1995. The chemistry of eavesdropping, alarm, andDeceit. Proc. Natl. Acad. Sci. U.S.A 92:23–28.

    Google Scholar 

  • Theodoratus, D. H. and Chiszar, D. 2000. Habitat selection and prey odor in the foraging behavior of western rattlesnakes (Crotalus viridis). Behaviour 137:119–135.

    Google Scholar 

  • Uhler, F. M., Cottam, C. and Clarke, T. E. 1939. Food of snakes of the George Washington National Forest, Virginia. Trans. N. Am. Wildl. Conf. 605–622.

  • Wang, D., Jiang, X. C., Chen, P., Inouchi, J., and Halpern, M. 1993. Chemical and immunological analysis of prey-derived vomeronasal stimulants. Brain Behav. Evol. 41:246–254.

    Google Scholar 

  • Wattiez, R., Remy, C., Falmagne, P., and Toubeau, G. 1994. Purification and preliminary characterization of a frog-derived proteinaceous chemoattractant eliciting prey attack by checkered garter snakes (Thamnophis marcianus). J. Chem. Ecol. 20:1143–1160.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, R.W. Timber Rattlesnakes (Crotalus horridus) Use Chemical Cues to Select Ambush Sites. J Chem Ecol 30, 607–617 (2004). https://doi.org/10.1023/B:JOEC.0000018632.27010.1e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOEC.0000018632.27010.1e

Navigation