Skip to main content
Log in

Chemical recognition in a snake–lizard predator–prey system

  • Original Paper
  • Published:
acta ethologica Aims and scope Submit manuscript

Abstract

In a predator–prey interaction, the fitnesses of the predator and the prey depend on their abilities to recognize each other, a process that may involve different sensory modalities. Squamate reptiles are highly dependent on chemical senses for such recognition, and here we explored the ability of a generalist saurophagous snake, Philodryas chamissonis, to discriminate scents of two congeneric and sympatric lizard prey species, Liolaemus nitidus and L. chiliensis. A generalist saurophagous snake might just be sensitive to lizard scents in general, and if so, no discrimination between prey species is expected. However, these lizards use different substrates; L. nitidus basks on rocks, whereas L. chiliensis mainly basks on bushes and rarely on ground. The snake P. chamissonis basks on ground and rocks, and rarely on bushes. Therefore, if the rate of encounter affects the ability to recognize prey, we predict that P. chamissonis would show prey discrimination because scents of L. chiliensis may be encountered less frequently in its habitat. Results showed that the snake had a refined discrimination of lizard prey, reducing tongue flick rate and movements in response to scents from the common prey scents, L. nitidus. We also studied the ability of L. chiliensis to detect the snake and found that snake scents triggered a reduction in activity. The potential infrequent encounter between predator and prey may explain the asymmetric predator–prey recognition, as can be predicted from the “life-dinner” principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aguilar PM, Labra A, Niemeyer HM (2009) Self-chemical recognition in the lizard Liolaemus fitzgeraldi. J Ethol 27:181–184

    Article  Google Scholar 

  • Amo L, López P, Martín J (2004a) Chemosensory recognition of its lizard prey by the ambush smooth snake, Coronella austriaca. J Herpetol 38:451–454

    Article  Google Scholar 

  • Amo L, López P, Martín J (2004b) Thermal dependence of chemical assessment of predation risk affects the ability of wall lizards, Podarcis muralis, to avoid unsafe refuges. Physiol Behav 82:913–918

    Article  CAS  PubMed  Google Scholar 

  • Arnold SJ (1992) Behavioural variation in natural populations. VI. Prey responses by two species of garter snakes in three regions of symapatry. Anim Behav 44:705–719

    Article  Google Scholar 

  • Balderas-Valdivia CJ, Ramírez-Bautista A (2005) Aversive behavior of beaded lizard, Heloderma horridum, to sympatric and allopatric predator snakes. Southwest Nat 50:24–31

    Article  Google Scholar 

  • Bevelander G, Smith TL, Kardong KV (2006) Microhabitat and prey odor selection in the foraging pigmy rattlesnake. Herpetologica 62:47–55

    Article  Google Scholar 

  • Bozinovic F, Rosenmann M (1988) Energetics and food requirements of the female snake Phillodryas chamissonis during the breeding season. Oecologia 75:282–284

    Article  Google Scholar 

  • Bradbury JW, Vehrencamp SL (2011) Principles of animal communication. Sinauer Associates, China

    Google Scholar 

  • Burghardt GM (1967) Chemical-cue preferences of inexperienced snakes: comparative aspects. Science 157:718–721

    Article  CAS  PubMed  Google Scholar 

  • Cisterne A, Vanderduys EP, Pike DA, Schwarzkopf L (2014) Wary invaders and clever natives: sympatric house geckos show disparate responses to predator scent. Behav Ecol 25:604–611

    Article  Google Scholar 

  • Clark RW (2004a) Feeding experience modifies the assessment of ambush sites by the timber rattlesnake, a sit-and-wait predator. Ethology 110:471–483

    Article  Google Scholar 

  • Clark RW (2004b) Timber rattlesnakes (Crotalus horridus) use chemical cues to select ambush sites. J Chem Ecol 30:607–617

    Article  CAS  PubMed  Google Scholar 

  • Cooper WE, Burghardt GM, Brown WS (2000) Behavioural responses by hatchling racers (Coluber constrictor) from two geographically distinct populations to chemical stimuli from potential prey and predators. Amphibia-Reptilia 21:103–115

    Article  Google Scholar 

  • Davies NB, Krebs JR, West SA (2012) An introduction to behavioural ecology. Wiley-Blackwell, Oxford

    Google Scholar 

  • Dawkins R, Krebs JR (1979) Arms races between and within species. P Roy Soc B-Biol Sc 205:489–511

    Article  CAS  Google Scholar 

  • Dial BE, Schwenk K (1996) Olfaction and predator detection in Coleonyx brevis (Squamata: Eublepharidae), with comments on the functional significance of buccal pulsing in geckos. J Exp Zool 276:415–424

    Article  Google Scholar 

  • Downes SJ (2002) Does responsiveness to predator scents affect lizard survivorship? Behav Ecol Sociobiol 52:38–42

    Article  Google Scholar 

  • Downes SJ, Adams M (2001) Geographic variation in antisnake tactics: the evolution of scent-mediated behavior in a lizard. Evolution 55:605–615

    Article  CAS  PubMed  Google Scholar 

  • Du WU, Webb JK, Shine R (2009) Heat, sight and scent: multiple cues influence foraging site selection by an ambush-foraging snake Hoplocephalus bungaroides (Elapidae). Curr Zool 55:266–271

    Google Scholar 

  • Durand J, Legrand A, Tort M, Thiney A, Michniewicz RJ, Coulon A, Aubret F (2012) Effects of geographic isolation on anti-snakes responses in the wall lizard, Podarcis muralis. Amphibia-Reptilia 33:199–206

    Article  Google Scholar 

  • Escobar MAH, Vukasovic MA (2003) Predation of Philodryas chamissonis (Serpentes: Colubridae) on chicks of Aphrasthura [Aphrastura] spinicauda (Passeriformes: Furnariidae): an arboricolous snake? Not Men Mus Nac Hist Nat (Santiago) 352:18–20

    Google Scholar 

  • Escobar CA, Labra A, Niemeyer HM (2001) Chemical composition of precloacal secretions of Liolaemus lizards. J Chem Ecol 27:1677–1690

    Article  CAS  PubMed  Google Scholar 

  • Greenbaum E (2004) The influence of prey-scent stimuli on predatory behavior of the North American copperhead Agkistrodon contortrix (Serpentes: Viperidae). Behav Ecol 15:345–350

    Article  Google Scholar 

  • Greene HW, Jaksic FM (1992) The feeding behavior and natural history of two Chilean snakes, Philodryas chamissonis and Tachymenis chiliensis (Colubridae). Rev Chil Hist Nat 65:485–493

    Google Scholar 

  • Hoare M, Labra A (2013) Searching for the audience of the weeping lizard’s distress call. Ethology 119:860–868

    Article  Google Scholar 

  • Kats LB, Dill LM (1998) The scent of death: chemosensory assessment of predation risk by prey animals. Ecoscience 5:361–394

    Google Scholar 

  • Labra A (2008) Multi-contextual use of chemosignals by Liolaemus lizards. In: Hurst JL, Beynon RJ, Roberts SC, Wyatt TD (eds) Chemical signals in vertebrates 11. SpringerLink, New York, pp 357–365

    Chapter  Google Scholar 

  • Labra A (2011) Chemical stimuli and species recognition in Liolaemus lizards. J Zool 285:215–221

    Article  Google Scholar 

  • Labra A, Niemyer HM (1999) Intrspecific chemical recognition in the lizard Lioalemus tenuis. J Chem Ecol 25:1799–1811

  • Labra A, Niemeyer HM (2004) Variability in the assessment of snake predation risk by Liolaemus lizards. Ethology 110:649–662

    Article  Google Scholar 

  • Labra A, Pienaar J, Hansen TF (2009) Evolution of thermal physiology in Liolaemus lizards: adaptation, phylogenetic inertia, and niche tracking. Am Nat 174:204–220

    Article  PubMed  Google Scholar 

  • Lobos G, Escobar MAH, Thomson RF, Alzamora A (2009) Philodryas chamissonis (long-tailed snake) and Liolaemus nitidus. Predation determined by pit tag. Herpetol Rev 40: 358

  • Mason RT, Parker MR (2010) Social behavior and pheromonal communication in reptiles. J Comp Physiol A 196:729–749

    Article  CAS  Google Scholar 

  • Mella JE (2005) Guía de campo Reptiles de Chile: Zona central. In Peñaloza AP, Novoa FF, Contreras M. Santiago, Chile, Centro de Ecología Aplicada Ltda, Pp xii + 147

  • Mori A, Hasegawa M (1999) Geographic difference in behavioral response of hatchling lizards (Eumeces okadae) to snake-predator chemicals. Jpn J Herpetol 18:45–56

    Google Scholar 

  • Muñoz-Leal S, Ardiles K, Figueroa RA, González-Acuña D (2013) Philodryas chamissonis (Reptilia: Squamata: Colubridae) preys on the arboreal marsupial Dromiciops gliroides (Mammalia: Microbiotheria: Microbiotheriidae). Braz J Biol 73:15–17

    Article  PubMed  Google Scholar 

  • Saviola AJ, Chiszar D, Mackessy SP (2012) Ontogenetic shift in response to prey-derived chemical cues in prairie rattlesnakes Crotalus viridis viridis. Curr Zool 58:549–555

    Google Scholar 

  • Saviola AJ, Chiszar D, Smith HM, Mackessy SP (2013) Chemosensory response in stunted prairie rattlesnakes Crotalus viridis viridis. Curr Zool 59:175–179

    Google Scholar 

  • Sepulveda M, Vidal MA, Farina JM (2006) Microlophus atacamensis (Atacama desert runner). Predation. Herpetol Rev 37:224–225

    Google Scholar 

  • Shine R, Mason RT (2012) An airborne sex pheromone in snakes. Biol Lett 8:183–185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Telemeco RS, Baird TA, Shine R (2011) Tail waving in a lizard (Bassiana duperreyi) functions to deflect attacks rather than as a pursuit-deterrent signal. Anim Behav 82:369–375

    Article  Google Scholar 

  • Troncoso-Palacios J, Labra A (2012) Is the exploratory behavior of Liolaemus nitidus modulated by sex? Acta Herpetol 7:69–80

    Google Scholar 

  • Van Damme R, Quick K (2001) Use of predator chemical cues by three species of lacertid lizards (Lacerta bedriagae, Podarcis tiliguerta, and Podarcis sicula). J Herpetol 35:27–36

    Article  Google Scholar 

  • Vidal MA, Labra A (2008) Herpetología de Chile. Science, Santiago, Chile

    Google Scholar 

  • Weaver RE, Clark WH, McEwen DC (2012) Prey chemical discrimination by the desert Nightsnake (Hypsiglena chlorophaea): a comparison of invertebrate and vertebrate prey. J Herpetol 46:523–526

    Article  Google Scholar 

  • Webb JK, Du WG, Pike DA, Shine R (2009) Chemical cues from both dangerous and nondangerous snakes elicit antipredator behaviours from a nocturnal lizard. Anim Behav 77:1471–1478

    Article  Google Scholar 

  • Webb JK, Pike DA, Shine R (2010) Olfactory recognition of predators by nocturnal lizards: safety outweighs thermal benefits. Behav Ecol 21:72–77

    Article  Google Scholar 

Download references

Acknowledgments

The study was authorized by SAG (Resolution No.7266) and by the Scientific Ethics Committee of the Faculty of Medicine, University of Chile. We thank K. Aguilera, F. Contreras, A. Martínez, B. Segura, G. Silva, F. Urra, A. Zapata, M. Penna, O. Acevedo and particularly to J. Constanzo, J. Lagos, F. Norambuena, and J. Troncoso-Palacios for their invaluable help in the field and laboratory. We are very grateful for the language improvements and important comments made by T.F. Hansen, and for the comments made by H. Díaz, C. Reyes-Olivares, F. Toledo and two anonymous reviewers, all of which improved significantly this manuscript. M. Hoare was supported by a fellowship from Fundación Guillermo Puelma (Universidad de Chile). Funds came from Fondecyt 1090251/1120181 (AL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonieta Labra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labra, A., Hoare, M. Chemical recognition in a snake–lizard predator–prey system. acta ethol 18, 173–179 (2015). https://doi.org/10.1007/s10211-014-0203-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10211-014-0203-7

Keywords

Navigation