Skip to main content

Advertisement

Log in

Behavioral variation in prey odor responses in northern pine snake neonates and adults

  • Research Paper
  • Published:
Chemoecology Aims and scope Submit manuscript

Abstract

Squamate reptiles (snakes, lizards, amphisbaenians) rely heavily on chemosensory cues to identify, locate and choose between suitable prey items, but comparatively little research has focused on the chemical ecology of threatened squamate species. Such knowledge highlights ecologically important aspects of their survival. Due to gape limitations, squamates often demonstrate ontogenetic shifts in their diet where they consume larger prey as they grow older and their gape size increases. This shift enables squamates—especially snakes—to exploit new resources in their environments, usually mammalian prey. To test for ontogenetic variation in prey odor responses of a threatened snake species, the Northern pine snake (Pituophis melanoleucus melanoleucus), we presented food-naïve neonates and food-experienced adults with potential prey and non-prey animal scents and quantified their behavioral responses. Our data indicate a strong response to rodent scents from both neonates and adults. Further, neonates showed more frequent investigative probing and retreating behaviors from scented swabs and a higher rate of tongue-flicking than adults. We also developed a new metric for measuring snake responses to prey odor, a tongue-flick reaction score (TFRS), that incorporates investigative behaviors that may be unique to constrictor-type snakes. The TFRS did not differ between age classes and was highest when rodent odors were tested. A canonical discriminant analysis confirmed the relationship between TFRS behavioral components and tested chemical signal reactions. Based on our data, P. melanoleucus may fall into a category of snakes that exhibit an ontogenetic telescope rather than a general ontogenetic shift in their prey odor responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amo L, López P, Martín J (2004) Chemosensory recognition of its lizard prey by the ambush smooth snake, Coronella austriaca. J Herpetol 38(3):451–454

    Article  Google Scholar 

  • Arnold SJ (1978) Some effects of early experience on feeding responses in the common garter snake, Thamnophis sirtalis. Anim Behav 26:455–462

    Article  Google Scholar 

  • Aubret F, Burghardt GM, Maumelat S, Bonnet X, Bradshaw D (2006) Feeding preferences in 2 disjunct populations of tiger snakes, Notechis scutatus (Elapidae). Behav Ecol 17(5):716–725

    Article  Google Scholar 

  • Bealor MT, Krekorian CO (2006) Chemosensory response of desert iguanas (Dipsosaurus dorsalis) to skin lipids from a lizard-eating snake (Lampropeltis getula californiae). Ethology 112:503–509

    Article  Google Scholar 

  • Bevelander G, Smith T, Kardong K (2006) Microhabitat and prey odor selection in the foraging pigmy rattlesnake. Herpetologica 62(1):47–55

    Article  Google Scholar 

  • Burger J (1991) Response to prey chemical cues by hatchling pine snakes (Pituophis melanoleucus): effects of incubation temperature and experience. J Chem Ecol 17:1069–1078

    Article  CAS  PubMed  Google Scholar 

  • Burger J, Zappalorti RT (1992) Philopatry and nesting phenology of pine snakes Pituophis melanoleucus in the New Jersey Pine Barrens. Behav Ecol Sociobiol 30(5):331–336

    Article  Google Scholar 

  • Burger J, Zappalorti R, Gochfeld M (1987) Developmental effects of incubation temperature on hatchling pine snakes Pituophis melanoleucus. Comp Biochem 87:727–732

    Article  Google Scholar 

  • Burger J, Boarman W, Kurzava L, Gochfeld M (1991) Effect of experience with pine (Pituophis melanoleucus) and king (Lampropeltis getulus) snake odors on Y-maze behavior of pine snake hatchlings. J Chem Ecol 17:79–87

    Article  CAS  PubMed  Google Scholar 

  • Burghardt G (1969) Comparative prey-attack studies in newborn snakes of the genus Thamnophis. Behaviour 33:77–114

    Article  Google Scholar 

  • Burghardt G (1970) Intraspecific geographical variation in chemical food cue preferences of newborn garter snakes. Behaviour 36:246–257

    Article  Google Scholar 

  • Burghardt G (1993) The comparative imperative: genetics and ontogeny of chemoreceptive prey response in Natricine snakes. Brain Behav Evol 41(138–1):46

    Google Scholar 

  • Burghardt GM, Hess EH (1968) Factors influencing the chemical release of prey attack in newborn snakes. J Comp Physiol Psychol 66(2):289–295

    Article  CAS  PubMed  Google Scholar 

  • Burghardt G, Krause M (1999) Plasticity of foraging behavior in garter snakes (Thamnophis sirtalis) reared on different diets. J Comp Psychol 113(3):277–285

    Article  Google Scholar 

  • Burghardt G, Layne D, Konigsberg L (2000) The genetics of dietary experience in a restricted natural population. Psychol Sci 11:69–72

    Article  CAS  PubMed  Google Scholar 

  • Chiszar D, Scudder K, Knight L (1976) Rate of tongue-flicking by garter snakes (Thamnophis radix haydeni) and rattlesnakes (Crotalus v. viridis, Sistrurus catenatus tergeminus, and S. c. edwardsi) during prolonged exposure to food Odors. Behav. Biol 283(5233):273–283

    Google Scholar 

  • Clark RW (2004) Kin recognition in rattlesnakes. Proc Biol Sci 271:243–245

    Article  Google Scholar 

  • Clark RW (2006) Post-strike behavior of timber rattlesnakes (Crotalus horridus) during natural predation events. Ethology 112:1089–1094

    Article  Google Scholar 

  • Cooper W, Burghardt G (1990) A comparative analysis of scoring methods for chemical discrimination of prey by squamate reptiles. J Chem Ecol 16(1):45–65

    Article  PubMed  Google Scholar 

  • Cooper W, Garstka W (1987) Lingual responses to chemical fractions of urodaeal glandular pheromone of the skink Eumeces laticeps. J Exp Zool 242:249–253

    Article  CAS  Google Scholar 

  • Cooper WE, Pérez-Mellado V (2001) Chemosensory responses to sugar and fat by the omnivorous lizard Gallotia caesaris: with behavioral evidence suggesting a role for gustation. Physiol Behav 73(4):509–516

    Article  CAS  PubMed  Google Scholar 

  • Cooper W, Secor S (2007) Strong response to anuran chemical cues by an extreme dietary specialist, the eastern hog-nosed snake (Heterodon platirhinos). Can J Zool 85(5):619–625

    Article  Google Scholar 

  • Cooper WE, Buth DG, Vitt LJ (1990) Prey odor discrimination by ingestively naive coachwhip snakes (Masticophis flagellum). Chemoecology 1:86–91

    Article  Google Scholar 

  • de Queiroz A (1984) Effects of prey type on the prey-handling behavior of the bullsnake, Pituophis melanoleucus. J Herpetol 18:333–336

    Article  Google Scholar 

  • Diller L, Wallace R (1996) Comparative ecology of two snake species (Crotalus viridis and Pituophis melanoleucus) in Southwestern Idaho. Herpetologica 52:343–360

    Google Scholar 

  • Dunbar GL (1979) Effects of early feeding experience on chemical preference of the Northern water snake, Natrix s. sipedon. J Herpetol 13:165–169

    Article  Google Scholar 

  • Forsman A (1996) Body size and net energy gain in gape-limited predators: a model. J Herpetol 30:307–319

    Article  Google Scholar 

  • Garrett C, Card W (1993) Chemical discrimination of prey by naive neonate Gould’s monitors Varanus gouldii. J Chem Ecol 19:2599–2604

    Article  CAS  PubMed  Google Scholar 

  • Gerald G, Bailey M, Holmes J (2006) Movements and activity range sizes of Northern pine snakes (Pituophis melanoleucus melanoleucus) in Middle Tennessee. J Herpetol 40:503–510

    Article  Google Scholar 

  • Gove D, Burghardt G (1975) Responses of ecologically dissimilar populations of the water snake Natrix s. sipedon to chemical cues from prey. J Chem Ecol 1:25–40

    Article  Google Scholar 

  • Graves BM, Halpern M (1988) Neonate plains garter snakes (Thamnophis radix) are attracted to conspecific skin extracts. J Comp Psychol 102:251–253

    Article  CAS  PubMed  Google Scholar 

  • Graves B, Halpern M, Friesen J (1991) Snake aggregation pheromones: source and chemosensory mediation in western ribbon snakes (Thamnophis proximus). J Comp Psychol 105:140–144

    Article  CAS  PubMed  Google Scholar 

  • Greene H (1983) Dietary correlates of the origin and radiation of snakes. Am Zool 23:431–441

    Google Scholar 

  • Greene H, Burghardt G (1978) Behavior and phylogeny: constriction in ancient and modern snakes. Science 200(4337):74–77

    Article  CAS  PubMed  Google Scholar 

  • Halpern M, Frumin N (1979) Roles of the vomeronasal and olfactory systems in prey attack and feeding in adult garter snakes. Physiol Behav 22:1183–1189

    Article  CAS  PubMed  Google Scholar 

  • Hampton PM (2014) Allometry of skull morphology, gape size and ingestion performance in the banded watersnake (Nerodia fasciata) feeding on two types of prey. J Exp Biol 217(Pt 3):472–478

    Article  PubMed  Google Scholar 

  • Hampton PM, Moon BR (2013) Gape size, its morphological basis, and the validity of gape indices in western diamond-backed rattlesnakes (Crotalus atrox). J Morphol 274:194–202

    Article  PubMed  Google Scholar 

  • IBM Corp. Released (2013) IBM SPSS Statistics for Windows, Version 22.0. IBM Corp., Armonk, NY. http://www-01.ibm.com/support/docview.wss?uid=swg21476197

  • Hayes W (1995) Venom metering by juvenile prairie rattlesnakes, Crotalus v. viridis: effects of prey size and experience. Anim Behav 50:33–40

    Article  Google Scholar 

  • Jackrel S, Reinert H (2011) Behavioral responses of a dietary specialist, the queen snake (Regina septemvittata), to potential chemoattractants released by its prey. J Herpetol 45:272–276

    Article  Google Scholar 

  • Kaas JH (2009) Evolutionary neuroscience. Academic Press, Oxford, pp 428–431

    Google Scholar 

  • Kardong KV (1986) Predatory strike behavior of the rattlesnake, Crotalus viridis oreganus. J Comp Psychol 100:304–314

    Article  Google Scholar 

  • King R (2002) Predicted and observed maximum prey size–snake size allometry. Funct Ecol 16:766–772

    Article  Google Scholar 

  • Kramer M, Weldon PJ, Carroll JF (2009) Composite scores for concurrent behaviours constructed using canonical discriminant analysis. Anim Behav 77:763–768

    Article  Google Scholar 

  • LeMaster MP, Mason RT (2001) Evidence for a female sex pheromone mediating male trailing behavior in the red-sided garter snake, Thamnophis sirtalis parietalis. Chemoecology 11:149–152

    Article  Google Scholar 

  • Lind A, Welsh HH (1994) Ontogenetic changes in foraging behaviour and habitat use by the Oregon garter snake, Thamnophis atratus hydrophilus. Anim Behav 48(6):1261–1273

    Article  Google Scholar 

  • Loop M (1970) The effects of feeding experience on the response to prey-object extracts in rat snakes. Psychon Sci 21:189–190

    Article  Google Scholar 

  • López P, Amo L, Martín J (2006) Reliable signaling by chemical cues of male traits and health state in male lizards, Lacerta monticola. J Chem Ecol 32(2):473–488

    Article  PubMed  Google Scholar 

  • López P, Ortega J, Martín J (2014) Chemosensory prey detection by the Amphisbaenian Trogonophis wiegmanni. J Herpetol 48:514–517. doi:10.1670/12-268

    Article  Google Scholar 

  • Mason RT (1992) Reptilian pheromones. In: Gans C, Crews D (eds) Biology of the reptilia, vol 18. University of Chicago Press, Chicago, pp 114–228

    Google Scholar 

  • Mason RT, Parker MR (2010) Social behavior and pheromonal communication in reptiles. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 196(10):729–749

    Article  CAS  PubMed  Google Scholar 

  • Mehta RS (2008) Early experience shapes the development of behavioral repertoires of hatchling snakes. J Ethol 27(1):143–151

    Article  Google Scholar 

  • Mori A (1994) Prey-handling behavior of newly hatched snakes in two species of the genus Elaphe with comparison to adult behavior. Ethology 97:198–214

    Article  Google Scholar 

  • Parker MR, Kardong KV (2005) Rattlesnakes can use airborne cues during post-strike prey relocation. In: Mason R, LeMaster MP, Mueller-Schwarze D (eds) Chemical signals in vertebrates 10. Springer Press, New York, pp 397–402

    Chapter  Google Scholar 

  • Persson L, Andersson J, Wahlström E, Eklöv P (1996) Size specific interactions in lake systems: predator gape limitation and prey growth rate and mortality. Ecology 77:900–911

    Article  Google Scholar 

  • Radcliffe C, Chiszar D, O’Connell B (1980) Effects of prey size on poststrike behavior in rattlesnakes (Crotalus durissus, C. enyo, and C. viridis). Bull Psychon Soc 16:449–450

    Article  Google Scholar 

  • Reformato LS, Kirschenbaum DM, Halpern M (1983) Preliminary characterization of response-eliciting components of earthworm extract. Pharmacol Biochem Behav 18:247–254

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Robles J (2002) Feeding ecology of North American gopher snakes (Pituophis catenifer, Colubridae). Biol J Linn Soc 77:165–183

    Article  Google Scholar 

  • Saviola A, Chiszar D, Mackessy S (2012) Ontogenetic shift in response to prey derived chemical cues in prairie rattlesnakes Crotalus viridis viridis. Curr Zool 58:549–555

    Google Scholar 

  • Schubert SN, Houck LD, Feldhoff PW, Feldhoff RC, Woodley SK (2008) The effects of sex on chemosensory communication in a terrestrial salamander (Plethodon shermani). Horm Behav 54(2):270–277

    Article  CAS  PubMed  Google Scholar 

  • Schwenk K (1993) The evolution of chemoreception in squamate reptiles: a phylogenetic approach. Brain Behav Evol 41:124–137

    Article  CAS  PubMed  Google Scholar 

  • Scudder K, Stewart N, Smith H (1980) Response of neonate water snakes (Nerodia s. sipedon) to conspecific chemical cues. J Herpetol 14(2):196–198

    Article  Google Scholar 

  • Shepard D, Phillips C, Dreslik M, Jellen B (2004) Prey preference and diet of neonate eastern massasaugas (Sistrurus c. catenatus). Am Midl 152:360–368

    Article  Google Scholar 

  • Shine R, Mason RT (2012) An airborne sex pheromone in snakes. Biol Lett 8:183–185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Slip DJ, Shine R (1988) Habitat use, movements, and activity patterns of free-ranging diamond pythons, Morelia s. spilota (Serpentes: Boidae): a radiotelemetric study. Aust Wildl Res l5:515–553

    Article  Google Scholar 

  • Stark C, Tiernan C, Chiszar D (2011) Effects of deprivation of vomeronasal chemoreception on prey discrimination in rattlesnakes. Psychol Rec 61:363–370

    Google Scholar 

  • Terrick T, Mumme R, Burghardt G (1995) Aposematic coloration enhances chemosensory recognition of noxious prey in the garter snake Thamnophis radix. Anim Behav 49:857–866

    Article  Google Scholar 

  • Troost T, Kooi BW, Dieckmann U (2008) Joint evolution of predator body size and prey-size preference. Evol Ecol 22:771–799

    Article  Google Scholar 

  • Urban M (2007) The growth-predation risk trade-off under a growing gape-limited predation threat. Ecology 88:2587–2597

    Article  PubMed  Google Scholar 

  • Urban M (2008) Salamander evolution across a latitudinal cline in gape limited predation risk. Oikos 117:1037–1049

    Article  Google Scholar 

  • Waters RM (1993) Odorized air current trailing by garter snakes, Thamnophis sirtalis. Brain Behav Evol 41:219–223

    Article  CAS  PubMed  Google Scholar 

  • Waters RM, Burghardt GM (2013) Prey availability influences the ontogeny and timing of chemoreception-based prey shifting in the striped crayfish snake, Regina alleni. J Comp Psychol 127(1):49–55

    Article  PubMed  Google Scholar 

  • Weldon P, Schell F (1984) Responses by king snakes (Lampropeltis getulus) to chemicals from colubrid and crotaline snakes. J Chem Ecol 10:1509–1520

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was conducted under NJDEP state permits (Permit No. SC 2012-085, SC 2013-085, SC 2014-085) and Drexel University IACUC (18924 and 20129). Thank you to the New Jersey Air National Guard and New Jersey Conservation Foundation for access to research sites. A special thanks to the Laboratory of Pinelands Research at Drexel University for financial support. KPWS would especially like to thank Dr. Emile DiVito, Raffaella Marano, Emily Ostrow, Kathryn Bendon and members of the Laboratory of Pinelands Research for assistance with field work and experiments, Dr. James R. Spotila for aid in manuscript revisions, and Kevin Redding at Monell Chemical Senses Center for supplying rodent scents for tests. The authors would also like to thank an anonymous reviewer for comments that significantly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin P. W. Smith.

Additional information

Handling Editor: Michael Heethoff.

Taxa

Class: Reptilia—Order: Squamata—Family: Colubridae—Genus: Pituophis—Species: Melanoleucus—Subspecies: Melanoleucus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, K.P.W., Parker, M.R. & Bien, W.F. Behavioral variation in prey odor responses in northern pine snake neonates and adults. Chemoecology 25, 233–242 (2015). https://doi.org/10.1007/s00049-015-0193-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00049-015-0193-6

Keywords

Navigation