Skip to main content
Log in

Pharmacokinetic Analysis of Mizolastine in Healthy Young Volunteers After Single Oral and Intravenous Doses: Noncompartmental Approach and Compartmental Modeling

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

This paper presents the analysis of the kinetics of a new antihistamine, mizolastine, in 18 healthy volunteers, from concentrations measured after an intravenous infusion and two different oral administrations: tablet and capsule. Two approaches were used to analyze these data: (i) a noncompartmental approach implemented in PHARM-NCA: (ii) a compartmental modeling approach implemented in a new S-PLUS library. NLS2, 5 which allows the estimation of variance parameters simultaneously with the kinetic parameters. For the compartmental modeling approach, two-compartment open models were used. According to the Akaike criterion, the best model describing the kinetics of mizolastine after oral administration was the zero-order absorption model. The kinetic parameters obtained with PHARM-NCA and NLS2 were similar. The estimated duration of absorption was greater for the tablets than for the capsules (with means equal to 1.13 hr and 0.84 hr respectively). After an intravenous infusion, the mean estimated clearance was 4.9 L/hr, the mean λ 2 -phase apparent volume of distribution was 89.6 L and the mean terminal half-life was 12.9 hr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Rosenzweig, J. J. Thebault, H. Caplain, C. Dubruc, G. Bianchetti, E. Fuseau, and P. L. Morselli. Pharmacodynamics and pharmacokinetics of mizolastine (SL 85.0324), a new nonsedative H1 antihistamine. Ann. Allergy 69:135–139 (1992).

    CAS  PubMed  Google Scholar 

  2. T. Hulot, G. Bianchetti, V. Ascalone, L. Flaminio, M. Picard, and P. L. Morselli. Absolute bioavailability and absorption kinetics of a new benzimidazole derivative, mizolastine, in healthy volunteers. Eur. J. Drug Metab. Pharmacokin. 18:36 (1993).

    Google Scholar 

  3. PHARM-NCA, Noncompartmental Pharmacokinetic Data Analysis Software, release 1.3e, SIMED SA, Créteil, France.

  4. M. Rowland. Intra-individual variability in pharmacokinetics. In D. D. Breimer (ed.), Towards Better Safety of Drugs and Pharmaceutical Products, Elsevier/North-Holland, Amsterdam, The Netherlands, 1980.

    Google Scholar 

  5. C. Dubruc, P. Chrétien, G. Bianchetti, J. P. Thenot, and P. L. Morselli. Inter-and intra-subject variability of the pharmacokinetic profile of mizolastine in healthy young volunteers after a single 10 mg oral administration. Eur. J. Drug Metab. Pharmacokin. 18:118 (1993).

    Google Scholar 

  6. M. O. Karlsson and L. B. Sheiner. Estimating bioavailability when clearance varies with time. Clin. Pharmacol. Ther. 55:623–637 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. J. G. Wagner. Biopharmaceutics and Relevant Pharmacokinetics, Drug Intelligence Publications, Hamilton, 1971.

    Google Scholar 

  8. A. Bouvier and S. Huet. NLS2. Nonlinear regression by S-PLUS functions. Comput. Stat. Data Anal. 18:187–190 (1994).

    Article  Google Scholar 

  9. V. Ascalone, P. Guinebault, and A. Rouchouse. Determination of mizolastine, a new antihistaminic drug, in human plasma by liquid-liquid extraction, solid-phase extraction and column-switching techniques in combination with high-performance liquid chromatography. J. Chromatog. 619:275–284 (1993).

    Article  CAS  Google Scholar 

  10. J. G. Wagner. Fundamentals of Clinical Pharmacokinetics, Drug Intelligence Publications, Hamilton, 1975.

    Google Scholar 

  11. M. Gibaldi and D. Perrier. Pharmacokinetics, Marcel Dekker, New York, 1982.

    Google Scholar 

  12. S-PLUS User's Manual, Statistical Sciences, Seattle, 1991.

  13. S. Huet, A Bouvier, M. A. Gruet, and E. Jolivet. Statistical Tools for Nonlinear Regression: A Practical Guide with S-PLUS Examples, Springer-Verlag, Berlin, 1996.

    Book  Google Scholar 

  14. H. Akaike. A new look at the statistical model identification. IEEE Trans. Automat. Contr. 19:716–723 (1974).

    Article  Google Scholar 

  15. T. L. Ludden, S. L. Beal, and L. B. Sheiner. Comparison of the Akaike Information Criterion, the Schwartz criterion, and the F test as guides to model selection. J. Pharmacokin. Biopharm. 22:431–436 (1994).

    Article  CAS  Google Scholar 

  16. J. D. Gibbons. Nonparametric Statistical Inference, McGraw-Hill, New York, 1971.

    Google Scholar 

  17. S. Holm. A simple sequentially rejective multiple test procedure. Scand. J. Statist. 6: 65–70 (1979).

    Google Scholar 

  18. W. R. Gillespie. Noncompartmental versus compartmental modeling in clinical pharmacokinetics. Clin. Pharmacokin. 20:253–262 (1991).

    Article  CAS  Google Scholar 

  19. K. E. Fattinger and D. Verotta. Estimating bioavailability when clearance changes in time: The effect of model misspecification. Clin. Pharmacol. Ther. 58:595–600 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. M. O. Karlsson and U. Bredberg. Estimation of bioavailability on a single occasion after semisimultaneous drug administration. Pharm. Res. 6:817–821 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. P. S. Collier and S. Riegelman. Estimation of absolute bioavailability assuming steady state apparent volume of distribution remains constant. J. Pharmacokin. Biopharm. 11:205–214 (1983).

    Article  CAS  Google Scholar 

  22. Y. Kasuya, T. Suruta, H. Shibasaki, and H. Shimota. Evaluation of the utility of a proposed method for correcting for intrasubject variability in metabolic clearance in the bioavailability assessment of the theophylline. J. Pharmacokin. Biopharm. 19:113–116 (1991).

    CAS  Google Scholar 

  23. S. D. Hall, C. B. McAllister, and G. R. Wilkinson. The assessment of bioavailability in the presence of nonlinear elimination. J. Pharmacokin. Biopharm. 16:263–278 (1988).

    Article  CAS  Google Scholar 

  24. M. O. Karlsson and U. Bredberg. Bioavailability estimation by semisimultaneous drug administration: A Monte Carlo simulation study. J. Pharmacokin. Biopharm. 18:103–120 (1990).

    Article  CAS  Google Scholar 

  25. M. Davidian and D. M. Giltinan. Nonlinear Models for Repeated Measurement Data, Chapman and Hall, London, 1995.

    Google Scholar 

  26. R. J. Carroll and D. Ruppert. A comparison between Maximum Likelihood and Generalized Least Squares, in a heteroscedastic linear model. J. Am. Statist. Assoc. 77:878–882 (1982).

    Article  Google Scholar 

  27. L. B. Sheiner and S. L. Beal. Pharmacokinetic parameter estimates from several least squares procedures: superiority of extended least squares. J. Pharmacokin. Biopharm. 13:185–201 (1985).

    Article  CAS  Google Scholar 

  28. D. M. Giltinan and D. Ruppert. Fitting heteroscedastic regression models to individual pharmacokinetic data using standard statistical software. J. Pharmacokin. Biopharm. 17:601–614 (1989).

    Article  CAS  Google Scholar 

  29. A. Messéan. A generalization of Gauss-Marquardt algorithm for exponential families problems. Comput. Statist. Quart. 4:79–88 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mesnil, F., Dubruc, C., Mentre, F. et al. Pharmacokinetic Analysis of Mizolastine in Healthy Young Volunteers After Single Oral and Intravenous Doses: Noncompartmental Approach and Compartmental Modeling. J Pharmacokinet Pharmacodyn 25, 125–147 (1997). https://doi.org/10.1023/A:1025775912051

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025775912051

Navigation