Skip to main content
Log in

Personalized Dosing of Medicines for Children: A Primer on Pediatric Pharmacometrics for Clinicians

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

The widespread use of drugs for unapproved purposes remains common in children, primarily attributable to practical, ethical, and financial constraints associated with pediatric drug research. Pharmacometrics, the scientific discipline that involves the application of mathematical models to understand and quantify drug effects, holds promise in advancing pediatric pharmacotherapy by expediting drug development, extending applications, and personalizing dosing. In this review, we delineate the principles of pharmacometrics, and explore its clinical applications and prospects. The fundamental aspect of any pharmacometric analysis lies in the selection of appropriate methods for quantifying pharmacokinetics and pharmacodynamics. Population pharmacokinetic modeling is a data-driven method (‘top-down’ approach) to approximate population-level pharmacokinetic parameters, while identifying factors contributing to inter-individual variability. Model-informed precision dosing is increasingly used to leverage population pharmacokinetic models and patient data, to formulate individualized dosing recommendations. Physiologically based pharmacokinetic models integrate physicochemical drug properties with biological parameters (‘bottom-up approach’), and is particularly valuable in situations with limited clinical data, such as early drug development, assessing drug–drug interactions, or adapting dosing for patients with specific comorbidities. The effective implementation of these complex models hinges on strong collaboration between clinicians and pharmacometricians, given the pivotal role of data availability. Promising advancements aimed at improving data availability encompass innovative techniques such as opportunistic sampling, minimally invasive sampling approaches, microdialysis, and in vitro investigations. Additionally, ongoing research efforts to enhance measurement instruments for evaluating pharmacodynamics responses, including biomarkers and clinical scoring systems, are expected to significantly bolster our capacity to understand drug effects in children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Subramanian D, Cruz CV, Garcia-Bournissen F. Systematic review of early phase pediatric clinical pharmacology trials. J Pediatr Pharmacol Ther. 2022;27:609–17.

    PubMed  PubMed Central  Google Scholar 

  2. Joseph PD, Craig JC, Caldwell PHY. Clinical trials in children. Br J Clin Pharmacol. 2015;79:357–69.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schupmann W, Li X, Wendler D. Acceptable risks in pediatric research: views of the US public. Pediatrics. 2021;149:1–10.

    Google Scholar 

  4. Burckart GJ, Kim C. The revolution in pediatric drug development and drug use: therapeutic orphans no more. J Pediatr Pharmacol Ther. 2020;25:565–73.

    PubMed  PubMed Central  Google Scholar 

  5. Bourgeois FT, Kesselheim AS. Promoting pediatric drug research and labeling: outcomes of legislation. N Engl J Med. 2022;381(9):875–81.

    Article  Google Scholar 

  6. Baum VC, Bax R, Heon D, Yang Z, Sakiyama M. Pediatric drug regulation: international perspectives. Paediatr Anaesth. 2019;29:572–82.

    Article  PubMed  Google Scholar 

  7. Moore-Hepburn C, Rieder M. Paediatric pharmacotherapy and drug regulation: moving past the therapeutic orphan. Br J Clin Pharmacol. 2022;88:4250–7.

    Article  PubMed  Google Scholar 

  8. Sharif R, Aamir M, Shakeel F, Faisal S, Khan JA. Pharmacoepidemiological assessment of off-label drug use in pediatric ambulatory departments at four tertiary care hospitals in Pakistan. Trop J Pharm Res. 2020;19:2219–25.

    Article  CAS  Google Scholar 

  9. Allen HC, Garbe MC, Lees J, Aziz N, Miller JL, Johnson P, et al. Off-label medication use in children, more common than we think: a systematic review of the literature. J Okla State Med Assoc. 2019;111:776–83.

    Google Scholar 

  10. Hoon D, Taylor MT, Kapadia P, Gerhard T, Strom BL, Horton DB. Trends in off-label drug use in ambulatory settings: 2006–2015. Pediatrics. 2019;144:1–19.

    Article  Google Scholar 

  11. Tukayo BLA, Sunderland B, Parsons R, Czarniak P. High prevalence of off-label and unlicensed paediatric prescribing in a hospital in Indonesia during the period Aug–Oct 2014. PLoS ONE. 2020;15:1–13.

    Article  Google Scholar 

  12. Yackey K, Stukus K, Cohen D, Kline D, Zhao S, Stanley R. Off-label medication prescribing patterns in pediatrics: an update. Hosp Pediatr. 2019;9:186–93.

    Article  PubMed  Google Scholar 

  13. Hwang TJ, Orenstein L, Kesselheim AS, Bourgeois FT. Completion rate and reporting of mandatory pediatric postmarketing studies under the US Pediatric Research Equity Act. JAMA Pediatr. 2019;173:68–74.

    Article  PubMed  Google Scholar 

  14. Srivastava A, Bourgeois FT. Evaluation of publication of pediatric drug trials. JAMA Netw Open. 2021;4:14–7.

    Article  Google Scholar 

  15. van den Anker J, Reed MD, Allegaert K, Kearns GL. Developmental changes in pharmacokinetics and pharmacodynamics. J Clin Pharmacol. 2018;58:S10-25.

    PubMed  Google Scholar 

  16. Smits A, Annaert P, Cavallaro G, De Cock PAJG, de Wildt SN, Kindblom JM, et al. Current knowledge, challenges and innovations in developmental pharmacology: a combined conect4children Expert Group and European Society for Developmental, Perinatal and Paediatric Pharmacology White Paper. Br J Clin Pharmacol. 2022;88:4965–84.

    Article  PubMed  Google Scholar 

  17. Van Groen BD, Nicolaï J, Kuik AC, Van Cruchten S, Van Peer E, Smits A, et al. Ontogeny of hepatic transporters and drug-metabolizing enzymes in humans and in nonclinical species. Pharmacol Rev. 2021;73:597–678.

    Article  PubMed  Google Scholar 

  18. Lu H, Rosenbaum S. Developmental pharmacokinetics in pediatric populations. J Pediatr Pharmacol Ther. 2014;19:262–76.

    PubMed  PubMed Central  Google Scholar 

  19. Nicolas JM, Bouzom F, Hugues C, Ungell AL. Oral drug absorption in pediatrics: the intestinal wall, its developmental changes and current tools for predictions. Biopharm Drug Dispos. 2017;38:209–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wanat K. Biological barriers, and the influence of protein binding on the passage of drugs across them. Mol Biol Rep. 2020;47:3221–31.

    Article  CAS  PubMed  Google Scholar 

  21. Alavijeh MS, Chishty M, Qaiser MZ, Palmer AM. Drug metabolism and pharmacokinetics, the blood-brain barrier, and central nervous system drug discovery. NeuroRx. 2005;2(4):554–71. https://doi.org/10.1602/neurorx.2.4.554.

  22. Debotton N, Dahan A. A mechanistic approach to understanding oral drug absorption in pediatrics: an overview of fundamentals. Drug Discov Today. 2014;19:1322–36.

    Article  CAS  PubMed  Google Scholar 

  23. Batchelor HK, Marriott JF. Paediatric pharmacokinetics: key considerations. Br J Clin Pharmacol. 2015;79:395–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bansal N, Momin S, Bansal R, Gurram Venkata SKR, Ruser L, Yusuf K. Pharmacokinetics of drugs: newborn perspective. Pediatr Med. 2024;7:19.

  25. Kiss M, Mbasu R, Nicolaï J, Barnouin K, Kotian A, Mooij MG, et al. Ontogeny of small intestinal drug transporters and metabolizing enzymes based on targeted quantitative proteomics. Drug Metab Dispos. 2021;49:1038–46.

    Article  CAS  PubMed  Google Scholar 

  26. Baptista JP. Augmented renal clearance. In: Antibiotic pharmacokinetic/pharmacodynamic considerations in the critically ill. Editors: Udy A, Roberts J, Lipman J. Adis, Singapore. https://doi.org/10.1007/978-981-10-5336-8_7

  27. Quigley R. Developmental changes in renal function. Curr Opin Pediatr. 2012;24:184–90.

    Article  PubMed  Google Scholar 

  28. Gattineni J, Baum M. Developmental changes in renal tubular transport: an overview. Pediatr Nephrol. 2015;30:2085–98.

    Article  PubMed  Google Scholar 

  29. Mulla H. Understanding developmental pharmacodynamics: importance for drug development and clinical practice. Pediatr Drugs. 2010;12:223–33.

    Article  Google Scholar 

  30. Ross RK, Kinlaw AC, Herzog MM, Funk MJ, Gerber JS. Fluoroquinolone antibiotics and tendon injury in adolescents. Pediatrics. 2021;147: e2020033316.

    Article  PubMed  Google Scholar 

  31. Pacifici GM. Clinical Pharmacology of Digoxin in Infants and Children. Clin Med. 2021;3(2):1036.

  32. Moon YE. Paradoxical reaction to midazolam in children. Korean J Anesthesiol. 2013;65:2–3.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Liu XI, Schuette P, Burckart GJ, Green DJ, La J, Burnham JM, et al. A comparison of pediatric and adult safety studies for antipsychotic and antidepressant drugs submitted to the United States Food and Drug Administration. J Pediatr. 2019;208:236-242.e3.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Plebani M. Errors in clinical laboratories or errors in laboratory medicine? Clin Chem Lab Med. 2006;44:750–9.

    Article  CAS  PubMed  Google Scholar 

  35. Himebauch AS, Sankar WN, Flynn JM, Sisko MT, Moorthy GS, Gerber JS, et al. Skeletal muscle and plasma concentrations of cefazolin during complex paediatric spinal surgery. Br J Anaesth. 2016;117:87–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dalmage MR, Nwankwo A, Sur H, Nduom E, Jackson S. A scoping review of pediatric microdialysis: a missed opportunity for microdialysis in the pediatric neuro-oncology setting. Neurooncol Adv. 2022;4:1–8.

    Google Scholar 

  37. Ketharanathan N, Yamamoto Y, Rohlwink UK, Wildschut ED, Mathôt RAA, De Lange ECM, et al. Combining brain microdialysis and translational pharmacokinetic modeling to predict drug concentrations in pediatric severe traumatic brain injury: the next step toward evidence-based pharmacotherapy? J Neurotrauma. 2019;36:111–7.

    Article  PubMed  Google Scholar 

  38. Dilo A, Daali Y, Desmeules J, Chalandon Y, Uppugunduri CRS, Ansari M. Comparing dried blood spots and plasma concentrations for busulfan therapeutic drug monitoring in children. Ther Drug Monit. 2020;42:111–7.

    Article  CAS  PubMed  Google Scholar 

  39. Klak A, Pauwels S, Vermeersch P. Preanalytical considerations in therapeutic drug monitoring of immunosuppressants with dried blood spots. Diagnosis. 2019;6:57–68.

    Article  PubMed  Google Scholar 

  40. Doriety LJ, Farrington EA. Urine drug screening: what pediatric clinicians need to know to optimize patient care. J Pediatr Health Care. 2021;35:449–55.

    Article  PubMed  Google Scholar 

  41. Hutchinson L, Sinclair M, Reid B, Burnett K, Callan B. A descriptive systematic review of salivary therapeutic drug monitoring in neonates and infants. Br J Clin Pharmacol. 2018;84:1089–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kuwayama K, Miyaguchi H, Iwata YT, Kanamori T, Tsujikawa K, Yamamuro T, et al. Time-course measurements of drug concentrations in hair and toenails after single administrations of pharmaceutical products. Drug Test Anal. 2017;9:571–7.

    Article  CAS  PubMed  Google Scholar 

  43. Sabir AM, Moloy M, Bhasin PS. Hplc method development and validation: a review. Int Res J Pharm. 2016;4:39–46.

    Article  Google Scholar 

  44. Decosterd LA, Widmer N, André P, Aouri M, Buclin T. The emerging role of multiplex tandem mass spectrometry analysis for therapeutic drug monitoring and personalized medicine. TrAC. 2016;84:5–13.

    CAS  Google Scholar 

  45. Dasgupta A. Limitations of immunoassays used for therapeutic drug monitoring of immunosuppressants. In: Personalized immunosuppression in transplantation role of biomarker monitoring and therapeutic drug monitoring. Editors: Oellerich M, Dasgupta A. Amsterdam: Elsevier Inc.;2016.

    Google Scholar 

  46. Aucella F, Lauriola V, Vecchione G, Tiscia GL, Grandone E. Liquid chromatography-tandem mass spectrometry method as the golden standard for therapeutic drug monitoring in renal transplant. J Pharm Biomed Anal. 2013;86:123–6.

    Article  CAS  PubMed  Google Scholar 

  47. Cooney L, Loke YK, Golder S, Kirkham J, Jorgensen A, Sinha I, et al. Overview of systematic reviews of therapeutic ranges: methodologies and recommendations for practice. BMC Med Res Methodol. 2017;17:1–9.

    Article  Google Scholar 

  48. Kelly LE, Sinha Y, Barker CIS, Standing JF, Offringa M. Useful pharmacodynamic endpoints in children: selection, measurement, and next steps. Pediatr Res. 2018;83:1095–103.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Timsit JF, de Kraker MEA, Sommer H, Weiss E, Bettiol E, Wolkewitz M, et al. Appropriate endpoints for evaluation of new antibiotic therapies for severe infections: a perspective from COMBACTE’s STAT-Net. Intensive Care Med. 2017;43:1002–12.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Shaikh N, Hoberman A, Paradise JL, Rockette HE, Kurs-Lasky M, Colborn DK, et al. Responsiveness and construct validity of a symptom scale for acute otitis media. Pediatr Infect Dis J. 2009;28:9–12.

    Article  PubMed  Google Scholar 

  51. Blussé Van Oud-Alblas HJ, Brill MJE, Peeters MYM, Tibboel D, Danhof M, Knibbe CAJ. Population pharmacokinetic-pharmacodynamic model of propofol in adolescents undergoing scoliosis surgery with intraoperative wake-up test: a study using Bispectral index and composite auditory evoked potentials as pharmacodynamic endpoints. BMC Anesthesiol. 2019;19:1–12.

    Article  Google Scholar 

  52. Sierra CM, Tran Y, Oana L, Bahjri K. Renal impairment associated with trimethoprim-sulfamethoxazole use in the pediatric population. J Pediatr Pharmacol Ther. 2022;27:663–8.

    PubMed  PubMed Central  Google Scholar 

  53. Walsh S, Pan S, Sheng Y, Kloprogge F, Standing JF, Anderson BJ, et al. Optimising intravenous salbutamol in children: a phase 2 study. Arch Dis Child. 2023;108:316–22.

    Article  PubMed  Google Scholar 

  54. De Cock RFW, Piana C, Krekels EHJ, Danhof M, Allegaert K, Knibbe CAJ. The role of population PK-PD modelling in paediatric clinical research. Eur J Clin Pharmacol. 2011;67(Suppl. 1):5–16.

    Article  PubMed  Google Scholar 

  55. Barker CIS, Standing JF, Kelly LE, Hanly Faught L, Needham AC, Rieder MJ, et al. Pharmacokinetic studies in children: recommendations for practice and research. Arch Dis Child. 2018;103:695–702.

    PubMed  Google Scholar 

  56. Chen B, Abuassba AOM. Compartmental models with application to pharmacokinetics. Proc Comput Sci. 2021;187:60–70.

    Article  Google Scholar 

  57. Sandra L, Smits A, Allegaert K, Nicolaï J, Annaert P, Bouillon T. Population pharmacokinetics of propofol in neonates and infants: gestational and postnatal age to determine clearance maturation. Br J Clin Pharmacol. 2021;87:2089–97.

    Article  CAS  PubMed  Google Scholar 

  58. Del Frari L, Léauté-Labrèze C, Guibaud L, Barbarot S, Lacour JP, Chaumont C, et al. Propranolol pharmacokinetics in infants treated for infantile hemangiomas requiring systemic therapy: modeling and dosing regimen recommendations. Pharmacol Res Perspect. 2018;6: e00399.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Thibault C, Massey SL, Abend NS, Naim MY, Zoraian A, Zuppa AF. Population pharmacokinetics of phenobarbital in neonates and infants on extracorporeal membrane oxygenation and the influence of concomitant renal replacement therapy. J Clin Pharmacol. 2021;61:378–87.

    Article  CAS  PubMed  Google Scholar 

  60. Rhoney DH, Metzger SA, Nelson NR. Scoping review of augmented renal clearance in critically ill pediatric patients. Pharmacotherapy. 2021;41:851–63.

    Article  PubMed  Google Scholar 

  61. Zylbersztajn B, Parker S, Navea D, Izquierdo G, Ortiz P, Torres JP, et al. Population pharmacokinetics of vancomycin and meropenem in pediatric extracorporeal membrane oxygenation support. Front Pharmacol. 2021;12: 709332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rapp M, Urien S, Foissac F, Béranger A, Bouazza N, Benaboud S, et al. Population pharmacokinetics of meropenem in critically ill children with different renal functions. Eur J Clin Pharmacol. 2020;76:61–71.

    Article  CAS  PubMed  Google Scholar 

  63. Li S, Shu C, Wu S, Xu H, Wang Y. Population pharmacokinetics and dose optimization of ganciclovir in critically ill children. Front Pharmacol. 2020;11: 614164.

    Article  CAS  PubMed  Google Scholar 

  64. Maharaj AR, Wu H, Zimmerman KO, Speicher DG, Sullivan JE, Watt K, et al. Dosing of continuous fentanyl infusions in obese children: a population pharmacokinetic analysis. J Clin Pharmacol. 2020;60:636–47.

    Article  CAS  PubMed  Google Scholar 

  65. Jones HM, Rowland-Yeo K. Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT Pharmacometr Syst Pharmacol. 2013;2:1–12.

    Article  Google Scholar 

  66. Dahl SG, Aarons L, Gundert-Remy U, Karlsson MO, Schneider Y-J, Steimer J-L, et al. Incorporating physiological and biochemical mechanisms into pharmacokinetic–pharmacodynamic models: a conceptual framework. Basic Clin Pharmacol Toxicol. 2010;106:2–12.

    Article  CAS  PubMed  Google Scholar 

  67. Kuepfer L, Niederalt C, Wendl T, Schlender J, Willmann S, Lippert J, et al. Applied concepts in PBPK modeling: how to build a PBPK/PD model. CPT Pharmacometr Syst Pharmacol. 2016;5:516–31.

    Article  CAS  Google Scholar 

  68. Liu X, Smith BJ, Chen C, Callegari E, Becker SL, Chen X, et al. Use of a physiologically based pharmacokinetic model to study the time to reach brain equilibrium: an experimental analysis of the role of blood–brain barrier permeability, plasma protein binding, and brain tissue binding. J Pharmacol Exp Ther. 2005;313:1254–62.

    Article  CAS  PubMed  Google Scholar 

  69. Hoehme S, Brulport M, Bauer A, Bedawy E, Schormann W, Hermes M, et al. Prediction and validation of cell alignment along microvessels as order principle to restore tissue architecture in liver regeneration. Proc Natl Acad Sci. 2010;107:10371–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. De Cock RFW, Allegaert K, Brussee JM, Sherwin CMT, Mulla H, de Hoog M, et al. Simultaneous pharmacokinetic modeling of gentamicin, tobramycin and vancomycin clearance from neonates to adults: towards a semi-physiological function for maturation in glomerular filtration. Pharm Res. 2014;31:2643–54.

    Article  PubMed  PubMed Central  Google Scholar 

  71. O’Hanlon CJ, Holford N, Sumpter A, Al-Sallami HS. Consistent methods for fat-free mass, creatinine clearance, and glomerular filtration rate to describe renal function from neonates to adults. CPT Pharmacometr Syst Pharmacol. 2023;12:401–12.

    Article  Google Scholar 

  72. Simcyp®. Available from www.simcyp.com. Accessed 8 May 2024.

  73. Open Systems Pharmacology. Available from http://www.open-systems-pharmacology.org/. Accessed 8 May 2024.

  74. Balbas-Martinez V, Michelet R, Edginton AN, Meesters K, Trocóniz IF, Vermeulen A. Physiologically-based pharmacokinetic model for ciprofloxacin in children with complicated urinary tract infection. Eur J Pharm Sci. 2019;128:171–9.

    Article  CAS  PubMed  Google Scholar 

  75. Edginton AN, Willmann S. Physiology-based simulations of a pathological condition: prediction of pharmacokinetics in patients with liver cirrhosis. Clin Pharmacokinet. 2008;47:743–52.

    Article  PubMed  Google Scholar 

  76. Watt KM, Cohen-Wolkowiez M, Barrett JS, Sevestre M, Zhao P, Brouwer KLR, et al. Physiologically-based pharmacokinetic approach to determine dosing on extracorporeal life support: fluconazole in children on ECMO. CPT Pharmacometr Syst Pharmacol. 2018;7:629–37.

    Article  CAS  Google Scholar 

  77. Allegaert K, Abbasi MY, Michelet R, Olafuyi O. The impact of low cardiac output on propofol pharmacokinetics across age groups: an investigation using physiologically based pharmacokinetic modelling. Pharmaceutics. 2022;14:1957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gerhart JG, Carreño FO, Edginton AN, Sinha J, Perrin EM, Kumar KR, et al. Development and evaluation of a virtual population of children with obesity for physiologically based pharmacokinetic modeling. Clin Pharmacokinet. 2022;61:307–20.

    Article  CAS  PubMed  Google Scholar 

  79. Ford JL, Gerhart JG, Edginton AN, Yanovski JA, Hon YY, Gonzalez D. Physiologically based pharmacokinetic modeling of metformin in children and adolescents with obesity. J Clin Pharmacol. 2022;62:960–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Johnson TN, Small BG, Rowland YK. Increasing application of pediatric physiologically based pharmacokinetic models across academic and industry organizations. CPT Pharmacometr Syst Pharmacol. 2022;11:373–83.

    Article  CAS  Google Scholar 

  81. Verscheijden LFM, Koenderink JB, de Wildt SN, Russel FGM. Development of a physiologically-based pharmacokinetic pediatric brain model for prediction of cerebrospinal fluid drug concentrations and the influence of meningitis. PLoS Comput Biol. 2019;15: e1007117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhu S, Zhang J, Lv Z, Zhu P, Oo C, Yu M, et al. Prediction of tissue exposures of meropenem, colistin, and sulbactam in pediatrics using physiologically based pharmacokinetic modeling. Clin Pharmacokinet. 2022;61:1427–41.

    Article  CAS  PubMed  Google Scholar 

  83. Yeung CHT, Ito S, Autmizguine J, Edginton AN. Incorporating breastfeeding-related variability with physiologically based pharmacokinetic modeling to predict infant exposure to maternal medication through breast milk: a workflow applied to lamotrigine. AAPS J. 2021;23:70.

    Article  CAS  PubMed  Google Scholar 

  84. Salerno SN, Capparelli EV, McIlleron H, Gerhart JG, Dumond JB, Kashuba ADM, et al. Leveraging physiologically based pharmacokinetic modeling to optimize dosing for lopinavir/ritonavir with rifampin in pediatric patients. Pharmacotherapy. 2023;3(7):638–49.

    Article  Google Scholar 

  85. Zhao X, Lu X, Zuo M, Wang N, Zhang Y, Chen J, et al. Drug-drug interaction comparison between tacrolimus and phenobarbital in different formulations for paediatrics and adults. Xenobiotica. 2021;51:877–84.

    Article  CAS  PubMed  Google Scholar 

  86. Verscheijden LFM, van der Zanden TM, van Bussel LPM, de Hoop-Sommen M, Russel FGM, Johnson TN, et al. Chloroquine dosing recommendations for pediatric COVID-19 supported by modeling and simulation. Clin Pharmacol Ther. 2020;108:248–52.

    Article  CAS  PubMed  Google Scholar 

  87. Felmlee MA, Morris ME, Mager DE. Mechanism-based pharmacodynamic modeling. Methods Mol Biol. 2012;929:583–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Verscheijden LFM, Litjens CHC, Koenderink JB, Mathijssen RHJ, Verbeek MM, de Wildt SN, et al. Physiologically based pharmacokinetic/pharmacodynamic model for the prediction of morphine brain disposition and analgesia in adults and children. PLoS Comput Biol. 2021;17:1–21.

    Article  Google Scholar 

  89. Abdulla A, Edwina EE, Flint RB, Allegaert K, Wildschut ED, Koch BCP, et al. Model-informed precision dosing of antibiotics in pediatric patients: a narrative review. Front Pediatr. 2021;9: 624639.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Downes KJ, Goldman JL. Too much of a good thing: defining antimicrobial therapeutic targets to minimize toxicity. Clin Pharmacol Ther. 2021;109:905–17.

    Article  CAS  PubMed  Google Scholar 

  91. Roberts JA, Norris R, Paterson DL, Martin JH. Therapeutic drug monitoring of antimicrobials. Br J Clin Pharmacol. 2012;73:27–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Holford N, Ma G, Metz D. TDM is dead. Long live TCI! Br J Clin Pharmacol. 2022;88:1406–13.

    Article  PubMed  Google Scholar 

  93. Kantasiripitak W, Wicha SG, Thomas D, Hoffman I, Ferrante M, Vermeire S, et al. A model-based tool for guiding infliximab induction dosing to maximise long-term deep remission in children with inflammatory bowel diseases. J Crohns Colitis. 2023;17:896–908.

    Article  PubMed  Google Scholar 

  94. Darwich AS, Polasek TM, Aronson JK, Ogungbenro K, Wright DFB, Achour B, et al. Model-informed precision dosing: background, requirements, validation, implementation, and forward trajectory of individualizing drug therapy. Annu Rev Pharmacol Toxicol. 2021;61:225–45.

    Article  CAS  PubMed  Google Scholar 

  95. Maier C, Hartung N, Kloft C, Huisinga W, de Wiljes J. Reinforcement learning and Bayesian data assimilation for model-informed precision dosing in oncology. CPT Pharmacometr Syst Pharmacol. 2021;10:241–54.

    Article  CAS  Google Scholar 

  96. Frymoyer A, Stockmann C, Hersh AL, Goswami S, Keizer RJ. Individualized rmpiric vancomycin dosing in neonates using a model-based approach. J Pediatr Infect Dis Soc. 2019;8:97–104.

    Article  Google Scholar 

  97. Allegaert K, Flint R, Smits A. Pharmacokinetic modelling and Bayesian estimation-assisted decision tools to optimize vancomycin dosage in neonates: only one piece of the puzzle. Expert Opin Drug Metab Toxicol. 2019;15:735–49.

    Article  CAS  PubMed  Google Scholar 

  98. Barras MA, Serisier D, Hennig S, Jess K, Norris RLG. Bayesian estimation of tobramycin exposure in patients with cystic fibrosis. Antimicrob Agents Chemother. 2016;60:6698–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kumar AA, Burgard M, Stacey S, Sandaradura I, Lai T, Coorey C, et al. An evaluation of the user-friendliness of Bayesian forecasting programs in a clinical setting. Br J Clin Pharmacol. 2019;85:2436–41.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Kantasiripitak W, Van Daele R, Gijsen M, Ferrante M, Spriet I, Dreesen E. Software tools for model-informed precision dosing: how well do they satisfy the needs? Front Pharmacol. 2020;11:620.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Kantasiripitak W, Outtier A, Wicha SG, Kensert A, Wang Z, Sabino J, et al. Multi-model averaging improves the performance of model-guided infliximab dosing in patients with inflammatory bowel diseases. CPT Pharmacometr Syst Pharmacol. 2022;11:1045–59.

    Article  CAS  Google Scholar 

  102. Uster DW, Stocker SL, Carland JE, Brett J, Marriott DJE, Day RO, et al. A model averaging/selection approach improves the predictive performance of model-informed precision dosing: vancomycin as a case study. Clin Pharmacol Ther. 2021;109:175–83.

    Article  CAS  PubMed  Google Scholar 

  103. Bi Y, Liu J, Li L, Yu J, Bhattaram A, Bewernitz M, et al. Role of model-informed drug development in pediatric drug development, regulatory evaluation, and labeling. J Clin Pharmacol. 2019. https://doi.org/10.1002/jcph.1478.

    Article  PubMed  Google Scholar 

  104. Kluwe F, Michelet R, Mueller-Schoell A, Maier C, Klopp-Schulze L, van Dyk M, et al. Perspectives on model-informed precision dosing in the digital health era: challenges, opportunities, and recommendations. Clin Pharmacol Ther. 2021;109:29–36.

    Article  PubMed  Google Scholar 

  105. Yellepeddi V, Rower J, Liu X, Kumar S, Rashid J, Sherwin CMT. State-of-the-art review on physiologically based pharmacokinetic modeling in pediatric drug development. Clin Pharmacokinet. 2019;58:1–13.

    Article  CAS  PubMed  Google Scholar 

  106. Rostami-Hodjegan A, Tucker GT. Simulation and prediction of in vivo drug metabolism in human populations from in vitro data. Nat Rev Drug Discov. 2007;6:140–8.

    Article  CAS  PubMed  Google Scholar 

  107. Johnson TN, Rostami-Hodjegan A. Resurgence in the use of physiologically based pharmacokinetic models in pediatric clinical pharmacology: parallel shift in incorporating the knowledge of biological elements and increased applicability to drug development and clinical practice. Paediatr Anaesth. 2011;21:291–301.

    Article  PubMed  Google Scholar 

  108. Kovarik JM, Hartmann S, Bartlett M, Riviere G, Neddermann D. Oral-intravenous crossover study of fingolimod. Biopharm Drug Dispos. 2007;28:97–104.

    Article  CAS  PubMed  Google Scholar 

  109. Schaller S, Willmann S, Lippert J, Schaupp L, Pieber TR, Schuppert A, et al. A generic integrated physiologically based whole-body model of the glucose insulin-glucagon regulatory system. CPT Pharmacometr Syst Pharmacol. 2013;2: e65.

    Article  CAS  Google Scholar 

  110. Willmann S, Thelen K, Becker C, Dressman JB, Lippert J. Mechanism-based prediction of particle size-dependent dissolution and absorption: cilostazol pharmacokinetics in dogs. Eur J Pharm Biopharm. 2010;76:83–94.

    Article  CAS  PubMed  Google Scholar 

  111. Hammarlund-Udenaes M. Microdialysis as an important technique in systems pharmacology: a historical and methodological review. AAPS J. 2017;19:1294–303.

    Article  CAS  PubMed  Google Scholar 

  112. Girdwood ST, Kaplan J, Vinks AA. Methodologic progress note: opportunistic sampling for pharmacology studies in hospitalized children. J Hosp Med. 2020;16:35–7.

    Article  Google Scholar 

  113. Laughon MM, Benjamin DK, Capparelli EV, Kearns GL, Berezny K, Paul IM, et al. Innovative clinical trial design for pediatric therapeutics. Expert Rev Clin Pharmacol. 2011;4:643–52.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Shores DR, Everett AD. Children as biomarker orphans: progress in the field of pediatric biomarkers. J Pediatr. 2018;193:14-20.e31.

    Article  PubMed  Google Scholar 

  115. McComb M, Bies R, Ramanathan M. Machine learning in pharmacometrics: opportunities and challenges. Br J Clin Pharmacol. 2022;88:1482–99.

    Article  PubMed  Google Scholar 

  116. Bradshaw EL, Spilker ME, Zang R, Bansal L, He H, Jones RDO, et al. Applications of quantitative systems pharmacology in model-informed drug discovery: perspective on impact and opportunities. CPT Pharmacometr Syst Pharmacol. 2019;8:777–91.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Meesters.

Ethics declarations

Funding

Kevin J. Downes is supported by The Eunice Kennedy Shriver National Institute of Child Health and Human Development (K23HD091365). Kevin Meesters is the recipient of the 2023 Bertram Hoffmeister Postdoctoral Fellowship Award at BC Children’s Hospital Research Institute. The other authors received no additional funding.

Conflicts of Interest/Competing Interests

Violeta Balbas-Martinez is an employee and shareholder of Eli-Lilly and Company. Kevin Meesters, Violeta Balbas-Martinez, Karel Allegaert, Kevin J. Downes, and Robin Michelet have no conflicts of interest that are directly relevant to the content of this article.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

Authors’ Contributions

KM, VB-M, KJD, RM, and KA conceptualized this article, performed the extensive literature review, contributed to the writing of the manuscript, and critically reviewed the manuscript. All authors read and approved the final manuscript as submitted.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meesters, K., Balbas-Martinez, V., Allegaert, K. et al. Personalized Dosing of Medicines for Children: A Primer on Pediatric Pharmacometrics for Clinicians. Pediatr Drugs (2024). https://doi.org/10.1007/s40272-024-00633-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40272-024-00633-x

Navigation