Skip to main content
Log in

Genetic variation among Southern African cultivated peanut (Arachis hypogaea L.) genotypes as revealed by AFLP analysis

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The amplified fragment length polymorphism (AFLP) technique, employing two different rare cutters, EcoRI and MluI in combination with the frequent cutter MseI, was used to assess genetic diversity and relationships among 21 closely related cultivated Southern African peanut genotypes. A dendrogram was constructed using Jaccard's coefficient and the UPGMA clustering method. Low levels of polymorphism (on average 2.78%) were detected. Results indicated that both EcoRI/MseI and MluI/MseIAFLP enzyme combinations efficiently detected polymorphism within closely related cultivated peanut, although the EcoRI/MseI enzyme combination detected more fragments per primer combination (on average 67.8) as opposed to29.7 by the MluI/MseI enzyme combination. All 21 genotypes could be uniquely distinguished from each other with a minimum of three MluI/MseI primer combinations. Genetic data correlated well with known species and pedigree data, dividing the 21 genotypes into two main groups corresponding to the two subspecies of Arachis hypogaea namely fastigiata and hypogaea. Divisions within the two main groups correlated with botanical types and pedigree data. This is the first report where MluI/MseI primer combinations were used on cultivated peanut and also the first successful detection of polymorphisms between closely related cultivated peanut genotypes worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bhagwat, A., T.G. Krishna & C.R. Bhatia, 1997. RAPD analysis of induced mutants of groundnut (Arachis hypogaea L.). J Genet 76: 201-208.

    Article  CAS  Google Scholar 

  • Blears, M.J., S.A. De Grandis, H. Lee & J.T. Trevors, 1998. Amplified fragment length polymorphism (AFLP): a review of the procedure and its applications. J Ind Microbiol Biotechnol 21: 99-114.

    Article  CAS  Google Scholar 

  • Burow, M.D., C.E. Simpson, A.H. Paterson & J.L. Starr, 1996. Identification of peanut (Arachis hypogaea L.) RAPD markers diagnostic of root-knot nematode (Meloidogyne arenaria (Neal) Chitwood) resistance. Mol Breed 2: 369-379.

    Article  CAS  Google Scholar 

  • Cilliers, A.J. & C.J. Swanevelder, 2003. Status of the South African germplasm collection of groundnut, Arachis hypogaea. SA J Plant Soil 20: 93-95.

    Google Scholar 

  • Divaret, I., Margalé, E. & G. Thomas, 1999. RAPD markers on seed bulks efficiently assesses the genetic diversity of a Brassica oleracea L. collection. Theor Appl Genet 98: 1029-1035.

    Article  CAS  Google Scholar 

  • Garcia, G.M., H.T. Stalker & G. Kochert, 1994. Introgression analysis of an interspecific hybrid population in peanuts (Arachis hypogaea L.) using RFLP and RAPD markers. Genome 38: 166-176.

    Google Scholar 

  • Gilbert, J.E., R.V. Lewis, M.J. Wilkinson & P.D.S. Caligari, 1999. Developing an appropriate strategy to assess genetic variability in plant germplasm collections. Theor Appl Genet 98: 1125-1131.

    Article  CAS  Google Scholar 

  • Grieshammer, U. & J.C. Wynne, 1990. Isozyme variability in mature seeds of U.S. peanut cultivars and collections. Peanut Sci 18: 72-75.

    Google Scholar 

  • Halward, T., H.T. Stalker & G. Kochert, 1993. Development of an RFLP linkage map in diploid peanut species. Theor Appl Genet 87: 379-384.

    Article  CAS  Google Scholar 

  • Halward, T., H.T. Stalker & G. Kochert, 1994. RFLP map of peanut. In: R.L. Phillips & I.K. Vasil (Eds.), DNA-based Markers in Plants, pp. 246-260. Kluwer Academic Publishers, London, UK.

    Google Scholar 

  • Halward, T.M., H.T. Stalker, E.A. LaRue & G. Kochert, 1991. Genetic variation detectable with molecular markers among unadapted germplasm resources of cultivated peanut and related wild species. Genome 34: 1013-1020.

    CAS  Google Scholar 

  • Halward, T., T. Stalker, E. LaRue & G. Kochert, 1992. Use of singleprimer DNA amplifications in genetic studies of peanut (Arachis hypogaea L.). Plant Mol Biol 18: 315-325.

    Article  PubMed  CAS  Google Scholar 

  • He, G. & C.S. Prakash, 1997. Identification of polymorphic DNA markers in cultivated peanut (Arachis hypogaea L.). Euphytica 97: 143-149.

    Article  CAS  Google Scholar 

  • Hopkins, M.S., A.M. Casa, T. Wang, S.E. Mitchell, R.E. Dean, G.D. Kochert & S. Kresovich, 1999. Discovery and characterization of polymorphic simple sequence repeats (SSRs) in peanut. Crop Sci 39: 1243-1247.

    Article  CAS  Google Scholar 

  • Jaccard, P., 1908. Nouvelles recherches sur la distribution florale. Bull Soc Vaud Sci Nat 44: 223-270.

    Google Scholar 

  • Kochert, G., 1995. Molecular mapping and use of molecular markers. Proc Am Peanut Res Edu Soc, Inc 27: 18.

    Google Scholar 

  • Kochert, G., T. Halward, W.D. Branch & C.E. Simpson, 1991. RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theor Appl Genet 81: 565-570.

    Article  CAS  Google Scholar 

  • Krapovickas, A. & W.C. Gregory, 1994. Taxonomia del genera Arachis (Leguminosae). Bonplandia 8: 1-184.

    Google Scholar 

  • Krapovickas, A. & V.A. Rigoni, 1960. La nomenclatura de las subspecies y variedades de Arachis hypogaea L. Rev de Invest Agric 14: 197-228.

    Google Scholar 

  • Lacks, G.D. & H.T. Stalker, 1993. Isozyme analysis of Arachis species and interspecific hybrids. Peanut Sci 20: 76-81.

    Article  CAS  Google Scholar 

  • Lanham, P.G., S. Fennell, J.P. Moss & W. Powell, 1992. Detection of polymorphic loci in Arachis germplasm using random amplified polymorphic DNAs. Genome 35: 885-889.

    PubMed  CAS  Google Scholar 

  • Lu, J. & B. Pickersgill, 1993. Isozyme variation and species relationships in peanut and its wild relatives (Arachis L.-Leguminosae). Theor Appl Genet 85: 550-560.

    Article  CAS  Google Scholar 

  • Paik-Ro, O.G., R.L. Smith & D.A. Knauft, 1992. Restriction fragment length polymorphism evaluation of six peanut species within the Arachis section. Theor Appl Genet 84: 201-208.

    Article  CAS  Google Scholar 

  • Saghai-Maroof, M.A., K.M. Soliman, R.A. Jorgensen & R.W. Allard, 1984. Ribosomal DNA spacer-length polymoprhism in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81: 8014-8018.

    Article  PubMed  CAS  Google Scholar 

  • Savage, G.P. & J.I. Keenan, 1994. The composition and nutritive value of groundnut kernels. In: J. Smartt (Ed.), The groundnut Crop: A Scientific Basis for Improvement, pp. 173-213. Chapman and Hall, London.

    Google Scholar 

  • Smartt, J. & H.T. Stalker, 1982. Speciation and cytogenetics in Arachis. In: H.E. Patee & C.T. Young (Eds.), Peanut Science and Technology, pp. 21-49. Am Peanut Res Educ Soc, Yoakum, Texas.

    Google Scholar 

  • Sokal, R.R. & C.D. Michener, 1958. A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull 38: 1409-1438.

    Google Scholar 

  • Stalker, H.T., T.D. Phillips, J.P. Murphy & T.M. Jones, 1994. Variation of isozyme patterns among Arachis species. Theor Appl Genet 87: 746-755.

    Article  CAS  Google Scholar 

  • Subramanian, V., S. Gurtu, R.C. Nageswara Rae & S.N. Nigam, 2000. Identification of DNA polymorphism in cultivated groundnut using random amplified polymorphic DNA (RAPD) assay. Genome 43: 656-660.

    Article  PubMed  CAS  Google Scholar 

  • Swanevelder, C.J., 2000. Groundnuts Always Tops. Agricultural Research Council, Potchefstroom.

    Google Scholar 

  • van der Merwe, P.J.A., 1981. Die Geskiedenis van Grondbone in Suidelike Afrika. Grondbone A.2.

  • van der Merwe, P.J.A. & L.P. van der Merwe, 1988. Harts: A groundnut cultivar with resistance to black pod rot (Chalara elegans). Appl Plant Sci 2: 82-84.

    Google Scholar 

  • van der Merwe, P.J.A. & W.J. Vermeulen, 1977. A new groundnut cultivar: Sellie. Agroplantae 9: 71-72.

    Google Scholar 

  • Vierling, R.A., Z. Xiang, C.P. Joshi, M.L. Gilbert & H.T. Nguyen, 1994. Genetic diversity among elite Sorghum lines revealed by resitriction fragment length polymorphisms and random amplified polymorphic DNAs. Theor Appl Genet 87: 816-820.

    Article  CAS  Google Scholar 

  • Vivek, B.S. & P.W. Simon, 1999. Phylogeny and relationships in Dacus based on restriction fragment length polymorphisms (RFLPs) of the chloroplast and mitochondrial genomes. Euphytica 105: 183-189.

    Article  CAS  Google Scholar 

  • Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. Van De Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper & M. Zabeau, 1995. AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 21: 4407-4414.

    Google Scholar 

  • Wynne, J.C. & T.M. Halward, 1989. Cytogenetics and genetics of Arachis. Crit Rev Plant Sci 8: 189-220.

    Article  Google Scholar 

  • Young, N.D., N.F. Weeden & G. Kochert, 1996. Genome mapping in legumes (Fam. Fabaceae). In: A.H. Paterson (Ed.), Genome Mapping in Plants, pp. 211-227. R.G. Landes Co., Austin, Texas.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herselman, L. Genetic variation among Southern African cultivated peanut (Arachis hypogaea L.) genotypes as revealed by AFLP analysis. Euphytica 133, 319–327 (2003). https://doi.org/10.1023/A:1025769212187

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025769212187

Navigation