Skip to main content
Log in

Genetic diversity and relatedness among ornamental purslane (Portulaca L.) accessions unraveled by SRAP markers

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Ornamental purslanes (Portulaca L.) are a popular annual bedding and container plant for landscaping. Little information is available concerning the genetic characterization of ornamental purslane resources thus far. The purpose of this study was to investigate the genetic diversity and relationships present in a collection of ornamental purslanes from Portulaca umbraticola and P. grandiflora cultivated in China, using sequence-related amplified polymorphism (SRAP) markers. The genotyping showed that 16 SRAP primer combinations totally produced 261 informative fragments and averaged 16.31 per primer combination. The major allele frequency and Nei’s gene diversity was calculated at 0.78 and 0.31 across the loci, indicative of a moderate low diversity. Both unweighted pair group method with arithmetic average (UPGMA) clustering and a Bayesian-based approach apparently assigned the whole accessions into two sub-groups: P. umbraticola and P. grandiflora, well concordant with the botanical classification and flower type. The findings provide a brandnew understanding of genetic diversity and population structure present in ornamental purslane, and benefit a sound design of breeding programs in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aneja B, Yadav NR, Chawla V, Yadav RC (2012) Sequence-related amplified polymorphism (SRAP) molecular marker system and its implications in crop improvement. Mol Breed 30:1635–1648

    Article  CAS  Google Scholar 

  • Bar C, Doğanlar S, Frary A (2015) Genetic relationships among Eurasian Puccinellia distans genotypes. Biochem Syst Ecol 62:20–24

    Article  CAS  Google Scholar 

  • Carolin RG (1993) Portulacaceae. In: Kubitzki K, Rhower JB, Bittrich V (eds) The families and genera of vascular plants. flowering plants—Dicotyledons 2. Springer, Berlin

    Google Scholar 

  • Chan K, Islam MW, Kamil M, Radhakrishnan R, Zakaria MN, Habibullah M, Attas A (2000) The analgesic and anti-inflammatory effects of Portulaca oleracea L. subsp. sativa (Haw.) Celak. J Ethnopharmacol 73:445–451

    Article  CAS  Google Scholar 

  • Coelho AAOP, Giulietti AM, Harley RM, Yesilyurt JC (2010) Synonymies and typifications in Portulaca (Portulacaeae) of Brazil. Kew Bull 65:37–43

    Article  Google Scholar 

  • Eggli U, Ford-Werntz D (2002) Illustrated handbook of succulent plants—Dicotyledons. Portulacaceae. Springer, New York

    Google Scholar 

  • El Jack AE (2004) Portulaca oleracea L. In: Gubben GJH, Denton OA (eds) Plant resources of tropical Africa 2: vegetables/Légumes. Backhuys Publishers, Wageningen, pp 426–428

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Geesink R (1969) An account of the genus Portulaca in Indo-Australia and the Pacific (Portulacaceae). Blumea 17:275–307

    Google Scholar 

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332

    Article  Google Scholar 

  • Khanuja SPS, Shasany AK, Darokar MP, Kumar S (1999) Rapid isolation of DNA from dry and fresh samples of plants producing large amounts of secondary metabolites and essential oils. Plant Mol Biol Rep 17:74

    Article  Google Scholar 

  • Klie M, Menz I, Linde M, Debener T (2013) Lack of structure in the gene pool of the highly polyploidy ornamental chrysanthemum. Mol Breed 32:339–348

    Article  Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassic. Theor Appl Genet 103:455–461

    Article  CAS  Google Scholar 

  • Li P, Zhang F, Chen S, Jiang J, Wang H, Su J, Fang W, Guan Z, Chen F (2016) Genetic diversity, population structure and association analysis in cut chrysanthemum (Chrysanthemum morifolium Ramat.). Mol Genet Genom 291:1117–1125

    Article  CAS  Google Scholar 

  • Lim YY, Quah EPL (2006) Antioxidant properties of different cultivars of Portulaca oleracea. Food Chem 103:734–740

    Article  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  CAS  Google Scholar 

  • Mihailovic N, Andrejić G, Dželetović Ž (2015) Tolerance of Portulaca grandiflora to individual and combined application of Ni, Pb and Zn. Bull Environ Contam Toxicol 94:103–107

    Article  CAS  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  CAS  Google Scholar 

  • Ocampo G, Columbus JT (2012) Molecular phylogenetics, historical biogeography, and chromosome number evolution of Portulaca (Portulacaceae). Mol Phylogenet Evol 63:97–112

    Article  Google Scholar 

  • Ohsaki A, Shibata K, Kubota T, Tokoroyama T (1999) Phylogenetic and chemotaxonomic significance of diterpenes in some Portulaca species (Portulacaceae). Biochem Syst Ecol 27:289–296

    Article  CAS  Google Scholar 

  • Pritchard JK, Falus D (2009) Documentation for STRUCTURE Software: version 2.3. The University of Chicago Press, Chicago

    Google Scholar 

  • Rahdari P, Hoseini SM (2012) Effect of different levels of drought stress (PEG 6000 concentrations) on seed germination and inorganic elements content in purslane (Portulaca oleracea L.) leaves. J Stress Physiol Biochem 8:51–61

    Google Scholar 

  • Rohlf FJ (2005) NTSYS-pc numerical taxonomy and multivariate analysis system. Version 2.2. Exeter Software, New York

    Google Scholar 

  • Simsek O, Curuk P, Aslan F, Bayramoglu M, Izgu T, da Silva JAT, Kacar YA, Mendi YY (2017) Molecular characterization of Cyclamen species collected from different parts of Turkey by RAPD and SRAP markers. Biochem Genet 55:87–102

    Article  CAS  Google Scholar 

  • Teixeira M, Carvalho IS (2009) Effects of salt stress on purslane (Portulaca oleracea) nutrition. Ann Appl Biol 154:77–86

    Article  CAS  Google Scholar 

  • Thangavel P, Subburam V (1998) Effect of trace metals on the restoration potential of leaves of the medicinal plant, Portulaca oleracea Linn. Biol Trace Elem Res 61:313–321

    Article  CAS  Google Scholar 

  • Valdez-Ojeda R, James-Kay A, Ku-Cauich JR, Escobedo-GraciaMedrano RM (2014) Genetic relationships among a collection of Musa germplasm by fluorescent-labeled SRAP. Tree Genet Genomes 10:465–476

    Article  Google Scholar 

  • Venu-Babu P, Ogale VK, Mishra SD (1996) Rosetteness in Portulaca grandiflora: an altered genetic expression. Mol Biol Rep 23:119–121

    Article  CAS  Google Scholar 

  • Wickramasinghe P, Harrison DK, Johnston ME (2009) Reproductive biology and intergeneric breeding compatibility of ornamental purslanes and Calandrinia (Portulacaceae). Aust J Bot 57:697–707

    Article  Google Scholar 

  • Yezici I, Türkan I, Sekmen AH, Demiral T (2007) Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhances antioxidative system, lower level of lipid peroxidation and proline accumulation. Environ Exp Bot 61:49–57

    Article  Google Scholar 

  • Yu C, Yin Y, Creech DL, Lu Z, Xu J (2016) Morphological characters and SRAP analysis of two hybrids between Hibiscus dasycalyx and Hibiscus ‘Moy Grande’. Sci Hortic 198:118–124

    Article  Google Scholar 

  • Zhang F, Chen S, Chen F, Fang W, Chen Y, Li F (2011) SRAP-based mapping and QTL detection for inflorescence-related traits in chrysanthemum (Dendranthema morifolium). Mol Breed 27:11–23

    Article  CAS  Google Scholar 

  • Zhang F, Ge Y, Wang W, Shen X, Liu X, Liu J, Tian D, Yu X (2012) Genetic diversity and population structure of cultivated bromeliad accessions assessed by SRAP markers. Sci Hortic 141:1–6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present research was partly financed by Top-notch Academic Programs Project of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Zhang.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, S., Yan, Z., Wang, Y. et al. Genetic diversity and relatedness among ornamental purslane (Portulaca L.) accessions unraveled by SRAP markers. 3 Biotech 7, 241 (2017). https://doi.org/10.1007/s13205-017-0881-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-017-0881-8

Keywords

Navigation