Skip to main content
Log in

Adsorption Energetics of NO and CO on Pt(111)

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The adsorption energetics of NO and CO on Pt(111) are studied using an ab initio embedding theory. The Pt(111) surface is modeled as a three-layer, 28-atom cluster with the Pt atoms fixed at bulk lattice sites. Molecular NO is adsorbed at high symmetry sites on Pt(111), with the fcc threefold site energetically more favorable than the hcp threefold and bridge sites. The calculated adsorption energy at the fcc threefold site is 1.90 eV, with an N-surface distance of 1.23 Å. The NO molecular axis is perpendicular to the Pt(111) surface. Tilting the O atom away from the surface normal destablizes adsorbed NO at all adsorption sites considered. On-top Pt adsorption has been ruled out. The Pt(111) potential surface is very flat for CO adsorption, and the diffusion barriers from hcp to fcc sites are 0.03 eV and less than 0.06 eV across the bridge and the atop sites, respectively. Calculated adsorption energies are 1.67, 1.54, 1.51, and 1.60 eV at the fcc threefold, hcp threefold, bridge, and atop sites, respectively. Calculated C-surface distances are 1.24 Å at the fcc threefold site and 1.83 Å at the atop site. It is concluded that NO and CO adsorption energetics and geometries are different on Pt(111).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. C. Campuzano, in D. A. King and D. P. Woodruff (eds.), The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, Vol. 3A (Elsevier, Amsterdam, 1990), Chap. 4.

    Google Scholar 

  2. G. Blyholder (1964). J. Phys. Chem. 68, 2772.

    Google Scholar 

  3. S. Ishi, Y. Ohno, and B. Viswanathan (1985). Surf. Sci. 161, 349.

    Google Scholar 

  4. A. Nilsson, N. Wassdahl, M. Weinelt, O. Karis, T. Wiell, P. Bennich, J. Hasselström, A. Föhlisch, J. Stöhr, and M. Samant (1997). Appl. Phys. A 65, 147.

    Google Scholar 

  5. A. Nilsson, M. Weinelt, T. Wiell, P. Bennich, O. Karis, N. Wassdahl, J. Stöhr, and M. Samant (1997). Phys. Rev. Lett. 78, 2847.

    Google Scholar 

  6. Y.-T. Wong and R. Hoffmann (1991). J. Phys. Chem. 95, 859.

    Google Scholar 

  7. P. Hu, D. A. King, M.-H. Lee, and M. C. Payne (1995). Chem. Phys. Lett. 246, 73.

    Google Scholar 

  8. H. Aizawa and S. Tsuneyuki (1998). Surf. Sci. 399, L364.

    Google Scholar 

  9. H. Ibach and S. Lehwald (1978). Surf. Sci. 76, 1.

    Google Scholar 

  10. S. Lehwald, J. T. Yates, Jr., and H. Ibach, in D. A. Degras and M. Costa (eds.), Proc. IVZ-8, ICSS-4, ECOSS-3 (Cannes, 1980), p. 221.

  11. J. L. Gland and B. A. Sexton (1980). Surf. Sci. 94, 355.

    Google Scholar 

  12. B. E. Hayden (1983). Surf. Sci. 131, 419.

    Google Scholar 

  13. W. Erley (1988). Surf. Sci. 205, L771.

    Google Scholar 

  14. J. G. Chen, W. Erley, and H. Ibach (1989). Surf. Sci. 224, 215.

    Google Scholar 

  15. F. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 5th ed. (Wiley, New York, 1988).

    Google Scholar 

  16. N. Materer, A. Barbieri, D. Gardin, U. Starke, J. D. Batteas, M. A. Van Hove, and G. A. Somorjai (1994). Surf. Sci. 303, 319.

    Google Scholar 

  17. F. Esch, T. Greber, S. Kennou, A. Siokou, S. Ladas, and R. Imbihl (1996). Catal. Lett. 38, 165.

    Google Scholar 

  18. M.-H. Tsai and K. C. Hass (1995). Phys. Rev. B 51, 14616.

    Google Scholar 

  19. K. C. Hass, M.-H. Tsai, and R. V. Kasowski (1996). Phys. Rev. B 53, 44.

    Google Scholar 

  20. W. Mannstadt and A. Freeman (1997). Phys. Rev. B 55, 13298.

    Google Scholar 

  21. M. Pérez Jigato, K. Somasundram, V. Termath, N. C. Handy, and D. A. King (1997). Surf. Sci. 380, 83.

    Google Scholar 

  22. Q. Ge and D. A. King (1998). Chem. Phys. Lett. 285, 15.

    Google Scholar 

  23. J. L. Whitten and H. Yang (1996). Surf. Sci. Rep. 24, 55.

    Google Scholar 

  24. J. L. Whitten (1993). Chem. Phys. 177, 387.

    Google Scholar 

  25. J. L. Whitten and H. Yang (1995). Int. J. Quant. Chem. Quant. Chem. Symp. 29, 41.

    Google Scholar 

  26. H. Yang and J. L. Whitten (1997). J. Chem. Phys. 107, 8518.

    Google Scholar 

  27. H. Yang (1997). J. Mol. Catal. A Chem. 119, 425.

    Google Scholar 

  28. J. L. Whitten and H. Yang (1999). Catal. Today 50, 603.

    Google Scholar 

  29. H. Yang and J. L. Whitten (1999). J. Mol. Struct. THEOCHEM 458, 131.

    Google Scholar 

  30. J. L. Whitten and H. Yang (1999). ACS Symp. Ser. 721, 274.

    Google Scholar 

  31. J. L. Whitten (1966). J. Chem. Phys. 44, 359.

    Google Scholar 

  32. C. Xu and B. E. Koel (1994). Surf. Sci. 310, 198.

    Google Scholar 

  33. G. W. Smith and E. A. Carter (1991). J. Phys. Chem. 95, 2327.

    Google Scholar 

  34. A. M. Bradshaw (1994). Surf. Sci. 299/300, 49.

    Google Scholar 

  35. H. Ibach (1994). Surf. Sci. 299/300, 116.

    Google Scholar 

  36. S. Aminpirooz, A. Schmatz, L. Becker, and J. Haase (1992). Phys. Rev. B 45, 6337.

    Google Scholar 

  37. J. K. Nørskov, private communication.

  38. P. R. Norton, J. A. Davies, and T. E. Jackman (1982). Surf. Sci. 122, L593.

    Google Scholar 

  39. H. Steininger, S. Lehwald, and H. Ibach (1982). Surf. Sci. 123, 264.

    Google Scholar 

  40. D. F. Ogletree, M. A. Van Hove, and G. A. Somorjai (1986). Surf. Sci. 173, 351.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H., Sanz, J.F., Wang, Y. et al. Adsorption Energetics of NO and CO on Pt(111). Journal of Cluster Science 10, 581–590 (1999). https://doi.org/10.1023/A:1021965310593

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021965310593

Navigation