Skip to main content
Log in

Velocity Measurements for Arc Jets Produced by a DC Plasma Spray Torch

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

An optical method was used to determine the axial velocity of plasma jets produced by a DC plasma spray torch. Different experimental conditions were tested in order to systematically study the influence of the working parameters on the plasma velocity. In this way, the arc current ranged between 200 and 600 A, the gas flow rate between 30 and 80 slm, and the internal nozzle diameter between 6 and 10 mm; the plasma gases were either an Ar–H 2 mixture or N 2 . Rather well defined tendencies were observed and at the same time it appeared that the arc stability greatly influenced the fluctuations of the velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Fauchais, “Thermal plasma engineering today in Western Europe,” High Temp. Chem. Process. 1, 1–43 (1992).

    Google Scholar 

  2. P. Fauchais, J. F. Courdert, and M. Vardelle, “Diagnostics in thermal plasma processing,” in Plasma Diagnostic Discharge Parameters and Chemistry, Academic Press, New York (1989) pp. 349–446.

    Google Scholar 

  3. A. B. Murphy, “Laser-scattering temperature measurements of a free-burning are in nitrogen,” in J. Phys. D: Appl. Phys. 27, 1492–1498 (1994).

    Google Scholar 

  4. S. C. Snyder and J. D. Grandy, “Integrated laser light scattering by thermal argon plasmas,” Heat Transfer in Thermal Plasmas Processing, Vol. 161, ASME, New York (1991) pp. 95–99.

    Google Scholar 

  5. S. C. Snyder, L. D. Reynolds, G. D. Lassahn, J. R. Fincke, C. B. Shaw, Jr., and R. J. Kearny, “Determination of gas-temperature and velocity profiles in an argon thermal-plasma jet by laser-light scattering,” Phys. Rev. E 47, 1996–2005 (1993).

    Google Scholar 

  6. J. R. Fincke, R. Rodriguez, and C. G. Pentecost, “Laminar to turbulent transition and entrainment in thermal plasma jet,” in Thermal Spray Research and Applications, (ASM Int., Metals Park, Ohio) (1990) pp. 45–51.

    Google Scholar 

  7. M. Brossa and E. Pfender, “Probe measurements in thermal plasma jets,” Plasma Chem. Plasma Process. 8, 75–90 (1988).

    Google Scholar 

  8. R. Spores and E. Pfender, “Flow structure of a turbulent thermal plasma jet,” in Thermal Spray Technology: New Ideas and Processes, (ASM Int., Metals Park, Ohio) (1988) pp. 85–92.

    Google Scholar 

  9. E. Pfender, J. R. Fincke, and R. Spores, “Entrainment of Cold Gas into thermal Plasma Jets,” Plasma Chem. Plasma Process. 11, 529–543 (1991).

    Google Scholar 

  10. A. W. Koch, K. D. Landes, G. Seeger, and W. Tiller, “Local measurements of gas velocity in an argon plasma jet by mean of laser light scattering,” IIW Doc. 212, pp. 706–715 (1988).

  11. A. Capetti and E. Pfender, “Probe measurement in argon plasma jets operated in ambient argon,” Plasma Chem. Process. 9, 329–341 (1989).

    Google Scholar 

  12. J. F. Coudert, M. P. Planche, and P. Fauchais, “Velocity measurement of D.C. plasma based on are root fluctuations,” Plasma Chem. Plasma Process. 15, 47–70, (1995).

    Google Scholar 

  13. M. P. Planche, O. Betoule, J. F. Coudert, A. Grimaud, M. Vardelle, and P. Fauchais, “Performance characteristics of a low velocity plasma spray torch,” in Plasma Spraying: Theory and Applications, (ASM Int., Metals Park, Ohio) (1993), pp. 81–88.

    Google Scholar 

  14. E. Pfender, “Electric arcs and arc gas heaters,” in Gaseous Electronics, Vol. 1 (M. N. Hirsch and H. J. Oskam, eds.), Academic Press, New York (1978) pp. 291–324.

    Google Scholar 

  15. M. P. Planche “Contribution to the study of the fluctuations in d.c. plasma torch—Application to the are dynamics and plasma velocity measurement,” Ph.D. Thesis (in French), Université de Limoges, France, No. 37 (1995).

    Google Scholar 

  16. S. Paik, P. C. Huang, J. Heberlein, and E. Pfender, “Determination of the arc root position in a dc plasma torch”, in Plasma Chem. Plasma Process. 13, 379–397 (1993).

    Google Scholar 

  17. J. F. Coudert, M. P. Planche, and P. Fauchais, “Anode-arc attachment instabilities in a plasma spray torch,” in High Temp. Chem. Process. 3, 639–651 (1994).

    Google Scholar 

  18. W. Finkelnburg and H. Maecker, “Elektrische böyen und thermisches plasma,” in Encyclopedia of Physics, Vol. XXII (S. Flügge, ed.), Springer Verlag, Germany (1956), pp. 254–293.

    Google Scholar 

  19. O. I. Yas'ko “Correlations of the characteristics of electrics arcs,” Brit. J. Appl. Phys. 2(2), 733–741 (1969).

    Google Scholar 

  20. J. F. Brilhac, B. Pateyron, G. Deluc, J. F. Coudert, and P. Fauchais, “Study of the dynamic behavior of a D.C. vortex plasma torch: Part I: Button type cathode,” Plasma Chem. Plasma Process. 15, 231–256 (1995).

    Google Scholar 

  21. J. F. Brilhac, B. Pateyron, J. F. Coudert, P. Fauchais, and A. Bouvier, “Study of the dynamic and static behavior of D.C. vortex plasma torches: Part II: Well-type cathode,” Plasma Chem. Plasma Process. 15, 257–277 (1995).

    Google Scholar 

  22. ADEP, Data bank of Limoges University and CNRS. Direction des Bibliothèques, des Musées et de l'Information Scientifique et Technique (1986) B. Pateyron, Thèse de Doctorat es Sciences Physiques, Université de Limoges, Nb 21, (1987).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Planche, M.P., Coudert, J.F. & Fauchais, P. Velocity Measurements for Arc Jets Produced by a DC Plasma Spray Torch. Plasma Chemistry and Plasma Processing 18, 263–283 (1998). https://doi.org/10.1023/A:1021606701022

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021606701022

Navigation