Skip to main content
Log in

Self focusing of q-Gaussian laser beams in collisional plasma with axial density ramp: effect of Ohmic heating

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

This paper investigates the phenomenon of self focusing in collisional plasmas with a axial density ramp, specifically utilizing q-Gaussian laser beam. The interplay between the unique characteristics of q-Gaussian laser beam and the varying plasma density along the beam propagation axis introduces intriguing dynamics. Variational theory has been employed to explore the evolution of beam width of the laser beam along the propagation axis. Impact of various parameters like ‘q’ parameter of the laser beam, plasma density and initial laser intensity on extent of self focusing of the laser beam has been investigated in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N. Gupta, S. Kumar, Linear and nonlinear propagation characteristics of multi-Gaussian laser beams. Chinese Phys. B. 29, 114210 (2020)

  2. N. Gupta, S. Kumar, A. Gnaneshwaran, S. Kumar, S. Choudhry, Self-focusing of cosh-Gaussian laser beam in collisional plasma: effect of nonlinear absorption. J. Opt. 50, 701 (2021)

    Article  Google Scholar 

  3. N. Gupta, S. Kumar, Self-action effects of quadruple-Gaussian laser beams in collisional plasmas and their resemblance to Kepler’s central force problem. Pramana 95, 53 (2021)

    Article  ADS  Google Scholar 

  4. P.K. Gupta, R.K. Singh, D. Strickland, M.C.W. Campbell, R.P. Sharma, Effect of multiphoton ionization on performance of crystalline lens. Opt. Lett. 39, 6775 (2014)

    Article  ADS  Google Scholar 

  5. W. Ge, C. Xing, V. Veiko, Z. Li, All-optical, self-focused laser beam array for parallel laser surface processing. Opt. Express 27, 29261 (2019)

    Article  ADS  Google Scholar 

  6. A. Singh, N. Gupta, Higher harmonic generation by self-focused q-Gaussian laser beam in preformed collisionless plasma channel. Laser Part. Beams 32, 621 (2014)

    Article  ADS  Google Scholar 

  7. A. Singh, N. Gupta, Beat wave excitation of electron plasma wave by relativistic cross focusing of cosh-Gaussian laser beams in plasma. Phys. Plasmas 22, 62115 (2015)

    Article  Google Scholar 

  8. N. Gupta, N. Singh, A. Singh, Second harmonic generation of q-Gaussian laser beam in preformed collisional plasma channel with nonlinear absorption. Phys. Plasmas 22, 113106 (2015)

    Article  ADS  Google Scholar 

  9. N. Gupta, R. Johari, Laser-driven electron acceleration by q-Gaussian laser pulse in plasma: effect of self-focusing. J. Appl. Spectrosc. 90, 1133 (2023)

    Article  ADS  Google Scholar 

  10. A. Singh, N. Gupta, Electron plasma wave excitation by beating of two q-Gaussian laser beams in collisionless plasma. Laser Part. Beams 34, 230 (2016)

    Article  ADS  Google Scholar 

  11. N. Gupta, Non-linear interaction of a q-Gaussian laser beam in a plasma channel created by the ignitor-heater technique. Cont. Plasma Phys. 59, 154 (2019)

    Article  ADS  Google Scholar 

  12. N. Gupta, Second harmonic generation of q-Gaussian laser beam in plasma channel created by ignitor heater technique. Laser Part. Beams 37, 184 (2019)

    Article  ADS  Google Scholar 

  13. N. Gupta, Hot electron generation by self focused quadruple gaussian laser beams during inertial confinement fusion. Nonlinear Opt. Quantum Opt. 55, 63 (2022)

    Google Scholar 

  14. I.A. Vaseva, M.P. Fedoruk, A.M. Rubenchik, S.K. Turitsyn, Light self-focusing in the atmosphere: thin window model. Sci. Rep. 6, 30697 (2016)

    Article  ADS  Google Scholar 

  15. E.J. Kautz, M.C. Phillips, S.S. Harilal, Laser-induced fluorescence of filament-produced plasmas. J. Appl. Phys. 130, 203302 (2021)

    Article  ADS  Google Scholar 

  16. G.A. Askaryan, Effects of the gradient of strong electromagnetic beam on electrons and atoms. Soviet Phys. JETP 15, 1088 (1962)

    Google Scholar 

  17. S. A., Akhmanov, A. P. Sukhorukov and R. V. Khokhlov, Self-focusing and diffraction of light in a nonlinear medium. Sov. Phys. Usp. 10, 609 (1968)

  18. A.J. Campillo, S.L. Shapiro, B.R. Suydam, Periodic breakup of optical beams due to selffocusing. Appl. Phys. Lett. 23, 628631 (1973)

    Article  Google Scholar 

  19. P. Gibbon, P. Monot, T. Auguste, G. Mainfray, Measurable signatures of relativistic self-focusing in underdense plasmas. Phys. Plasmas 2, 1305 (1995)

    Article  ADS  Google Scholar 

  20. H. Hora, Theory of relativistic self-focusing of laser radiation in plasmas. J. Opt. Soc. Am. 65, 882 (1975)

    Article  ADS  Google Scholar 

  21. M.S. Sodha, A.K. Ghatak, V.K. Tripathi, Progress in optics.Volume XIII (edited by Wolf, E.), North Holland, Amsterdam. 13, 169 (1976)

  22. N. Gupta, S. Kumar, Generation of second harmonics of relativistically self-focused q-Gaussian laser beams in underdense plasma with axial density ramp. Opt. Quant. Electron. 53, 193 (2021)

    Article  Google Scholar 

  23. N. Gupta, S. Kumar, Nonlinear interaction of elliptical q-Gaussian laser beams with plasmas with axial density ramp: effect of ponderomotive force. Opt. Quant. Electron. 53, 253 (2021)

    Article  Google Scholar 

  24. D. Anderson, M. Bonnedal, M. Lisak, Non linear propagation of elliptically shaped Gaussian laser beams. J. Plasma Phys. 23, 115 (1980)

    Article  ADS  Google Scholar 

  25. D. Anderson, M. Bonnedal, Variational approach to non linear self-focusing of Gaussian laser beams. Phys. Fluids 22, 105 (1979)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Gupta.

Ethics declarations

Conflict of interest

Authors don’t have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, N., A K, A., Partap, R. et al. Self focusing of q-Gaussian laser beams in collisional plasma with axial density ramp: effect of Ohmic heating. J Opt (2024). https://doi.org/10.1007/s12596-024-01860-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01860-8

Keywords

Navigation