Skip to main content
Log in

Catalytic Mechanism of the “Noncatalytic” Autooxidation of Sulfite

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Iron ions are shown to play a special role among transition metal ions in the oxidation of sulfite by oxygen. The thermodynamically favorable formation of chain carriers S\(\operatorname{so} _3^{\dot - }\) : FeOH2++ HSO3 → Fe2++ H2O + \(\operatorname{so} _3^{\dot - }\), ΔH r 298 0≤ –250 kJ/mol accompanied by the regeneration of the active Fe(III) form in the reactions of Fe(II) with \(\operatorname{so} _{3 - 5}^{\dot - }\) and HSO5 provides the efficient catalytic mechanism for sulfite consumption even at [Fe]0≥ 10–8mol/l. Any aqueous solution contains iron ions in this amounts. Thus, the “noncatalytic” oxidation of sulfite is in fact the catalytic reaction involving unavoidable microadmixtures of iron ions. Other transition metal ions (Mn2+, Co2+, etc.) can only enhance the catalytic effect of iron admixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fuller, E.C. and Crist, R.H., J. Am. Chem. Soc., 1941, vol. 63, no. 6, p. 1644.

    Google Scholar 

  2. Rand, M.C., Gale, S.B. Principles and Applications of Water Chemistry, Faust, S.D. and Hunter, J.V., Eds., New York: Wiley, 1967, p. 397.

    Google Scholar 

  3. McKay, H.A.C., Atmos. Environ., 1971, vol. 5, p. 7.

    Google Scholar 

  4. Beilke, S., Lamb, D., and Muller, J., Atmos. Environ., 1975, vol. 9, p. 1083.

    Google Scholar 

  5. Miller, J.M. and de Pena, R.G., J. Geophys. Res., 1972, vol. 77, p. 5905.

    Google Scholar 

  6. Brimblecomb, P. and Spedding, D.J., Atmos. Environ., 1974, vol. 8, p. 937.

    Google Scholar 

  7. Larson, T.J., Horike, N.R., and Harrison, H., Atmos. Environ., 1978, vol. 12, no. 8, p. 1597.

    Google Scholar 

  8. Hegg, D.A. and Hobbs, P.V., Atmos. Environ., 1978, vol. 12, p. 241.

    Google Scholar 

  9. Rodojevic, M., Ph.D. Thesis, Leeds: University of Leeds, 1983.

  10. Martin, L.R., Acid Precipitation Series, Calvert, J.G., Ed., Boston: Butterworth, 1984, vol. 3, p. 63.

    Google Scholar 

  11. Hoffman, M.R. and Jacod, D., Acid Precipitation Series, Calvert, J.G., Ed., Boston: Butterworth, 1984, vol. 3, p. 103.

    Google Scholar 

  12. Warneck, P., Mirabel, V., Salmon, G.A., et al., Review of the Activities and Achievements of the EUROTRAC Subproject HALIPP, Warneck, P., Ed., Berlin: Springer, 1996, vol. 2, p. 7.

    Google Scholar 

  13. Seinfeld, J.H. and Pandis, S.N., Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, New York: Willey, 1998, p. 1326.

    Google Scholar 

  14. Radojevic, M., Environ. Techol. Lett., 1984, vol. 5, p. 549.

    Google Scholar 

  15. Semenov, N.N., Tsepnye reaktsii (Chain Reactions), Moscow: Nauka, 1986, p. 321.

    Google Scholar 

  16. Deister, U. and Warnek, P., J. Phys. Chem., 1990, vol. 94, p. 2191.

    Google Scholar 

  17. Yermakov, A.N., Zhitomirsky, B.M., Poskrebyshev, G.A., et al., J. Phys. Chem., 1995, vol. 99, no. 10, p. 3120.

    Google Scholar 

  18. Buxton, G.V., Croft, S., McGowan, S., et al., Atmos. Environ., 1996, vol. 30, no. 14, p. 2483.

    Google Scholar 

  19. Travina, O.A., Kozlov, Yu.N., Purmal', A.P., et al., Kinet. Katal., 1997, vol. 38, no. 2, p. 246.

    Google Scholar 

  20. Penkett, S.A., Jones, B.M.R., Brice, K.A., et al., Atmos. Environ., 1979, vol. 13, p. 123.

    Google Scholar 

  21. Matsuura, A., Harada, J., Akehata, T., et al., J. Chem. Eng. Jpn., 1969, vol. 2, p. 199.

    Google Scholar 

  22. Ibusuki, T. and Barnes, H.M., Atmos. Environ., 1984, vol. 18, p. 145.

    Google Scholar 

  23. Ibusuki, T. and Takeuchi, K., Atmos. Environ., 1987, vol. 21, p. 1555.

    Google Scholar 

  24. Huss, A., Jr., Lim, P.K., and Eckert, C.A., J. Phys. Chem., 1982, vol. 86, no. 21, p. 4224.

    Google Scholar 

  25. Berglund, J., Fronaeous, S., and Elding, L.I., J. Inorg. Chem., 1993, vol. 32, p. 4527.

    Google Scholar 

  26. Travina, O.I., Kozlov, Yu.N., Purmal', A.P., et al., Zh. Fiz. Khim., 1999, vol. 73, no. 8, p. 1361.

    Google Scholar 

  27. Poskrebyshev, G.A., Zh. Fiz. Khim., 1997, vol. 71, no. 9, p. 1355.

    Google Scholar 

  28. Karapet'yants, M.Kh. and Karapet'yants, M.L., Osnovnye termodinamicheskie konstanty neorganicheskikh i organicheskikh veshchestv (Principal Thermodynamic Constants of Inorganic and Organic Substances), Moscow: Khimiya, 1968, p. 469.

    Google Scholar 

  29. O'Hara, P.A.G., Basile, L., and Appelman, E.H., J. Chem. Thermodyn., 1985, vol. 17, p. 473.

    Google Scholar 

  30. Milburn, R. and Vosburgh, W.C., J. Am. Chem. Soc., 1955, vol. 77, p. 1352.

    Google Scholar 

  31. Latimer, W.W., Oxidation States and Oxidation Potentials, New York: Prentice-Hall, 1952.

    Google Scholar 

  32. Paulson, A.J. and Kester, D.R., J. Solution. Chem., 1980, vol. 9, p. 269.

    Google Scholar 

  33. Grgic, I., Hudnick, V., Bizjak, M., and Levec, J., Atmos. Environ., 1991, vol. 25A, no. 8, p. 1591.

    Google Scholar 

  34. Berglund, J., Fronaeous, S., and Elding, L.I., Atmos. Environ., 1995, vol. 29, no. 12, p. 1379.

    Google Scholar 

  35. Brandt, C., Fabian, I., and van Eldik, R., J. Inorg. Chem., 1994, vol. 33, no. 3, p. 687.

    Google Scholar 

  36. Prinsloo, F.F., Brandt, C., Lepentsiotis, V., et al., J. Inorg. Chem., 1997, vol. 36, no. 1, p. 119.

    Google Scholar 

  37. Kraft, J. and van Eldik, R., J. Inorg. Chem., 1989, vol. 28, no. 12, p. 2306.

    Google Scholar 

  38. Conklin, M.H. and Foffmann, M.R., Envir. Sci. Technol, 1988, vol. 22, no. 8, p. 899.

    Google Scholar 

  39. Brandt, C. and van Eldik, R., Chem. Rev., 1995, vol. 95, no. 1, p. 119.

    Google Scholar 

  40. Bal Reddy, K. and van Eldik, R., Atmos. Environ., 1992, vol. 26, no. 4, p. 661.

    Google Scholar 

  41. Sato, T., Goto, T., Okabe, T., et al., Bull. Chem. Soc. Jpn., 1984, vol. 57, no. 8, p. 2082.

    Google Scholar 

  42. Aubuchon, C., Ph.D. Thesis, Baltimore: Johns Hopkins University, 1976.

  43. Fuzzi, S., Atmos. Environ., 1978, vol. 12, p. 1439.

    Google Scholar 

  44. Benkelberg, H.-J. and Warneck, P., J. Phys. Chem., 1995, vol. 99, no. 14, p. 5214.

    Google Scholar 

  45. Martin, L.R., Hill, M.W., Tai, A.F., et al., J. Geophys. Res., 1991, vol. 96, p. 3085.

    Google Scholar 

  46. Winkelman, D., Z. Electrochem., 1955, vol. 59, p. 891.

    Google Scholar 

  47. Yagi, S. and Inoe, H., Chem. Eng. Sci., 1962, vol. 17, p. 411.

    Google Scholar 

  48. Van den Heuvel, A.P. and Mason, B.J., Quart. J. Royal. Met. Soc., 1963, vol. 89, p. 271.

    Google Scholar 

  49. Schroeter, L.C., J. Pharm. Sci., 1963, vol. 52, p. 559.

    Google Scholar 

  50. Barron, C.H. and O'Hern, H.A., Chem. Eng. Sci., 1966, vol. 21, p. 397.

    Google Scholar 

  51. Tsunogai, S., Geochem. J., 1971, vol. 5, p. 175.

    Google Scholar 

  52. Hudson, J.L., Erwin, J., and Catipovic, N.M., Report EPA-600/7-79-030, National Technical Information Service, Springfield: US Department of Commerce, 1979, vol. A.

    Google Scholar 

  53. Steel, R.L., Gertler, A.W., Katz, V., et al., Atmos. Environ., 1981, vol. 15, p. 2341.

    Google Scholar 

  54. Clark, A.G. and Radojevic, M., Atmos. Environ., 1983, vol. 15, p. 2341.

    Google Scholar 

  55. Mishra, G.C. and Srivastava, R.D., Chem. Eng. Sci., 1975, vol. 30, p. 1387.

    Google Scholar 

  56. Pasiuk-Bronikowska, W., Rudzinski, K.J., Bronikowski, T., et al., EUROTRAC Ann. Rep., 1993, Pt. 6. P. 42.

  57. Neytzell-de-Wilde, F.G. and Traverner, L., Proc. Second United Nations International Conf. on Peaceful Uses of Atomic Energy, Geneva: United Nations, 1958, vol. 3, p. 303.

    Google Scholar 

  58. Coichev, N. and van Eldik, R., New J. Chem., 1994, vol. 18, no. 1, p. 123.

    Google Scholar 

  59. Berglund, J., Buxton, G.V., Elding, L.L., et al., J. Chem. Soc., Faraday Trans., 1994, vol. 90, no. 21, p. 3309.

    Google Scholar 

  60. Ermakov, A.N., Kozlov, Yu.N., and Purmal', A.P., Kinet. Katal., 1999, vol. 40, no. 5, p. 663.

    Google Scholar 

  61. Poznic, M., Grgic, I., and Bercic, G., Proc. EUROTRAC'98 Symp., Borell, P.M. and Borell, P., Eds., Southampton: WITPRESS, 1999, vol. 1, p. 734.

    Google Scholar 

  62. Ziajka, J., Beer, F., and Warneck, P., Atmos. Environ., 1994, vol. 28, no. 15, p. 2549.

    Google Scholar 

  63. Fischer, M., Paydar, M., Warneck, P., and Ziajka, J., Final Report Contract no. STEP-0005-C(MB), Report F, 1992, p. 75.

  64. Crgic, I., Novic, M., Poje, M., et al., Proc. Joint EC/EUROTRAC Workshop'95. Lactoz-Halipp. Rep. EUR 16766 EN, Mirabel Ph., Ed. Brussels, 1996, p. 138.

  65. Lagrange, J., Lagrange, P., Pallares, C., et al., Final Report Contract no. STEP-0005-C(MB), Report A, 1992, p. 11.

  66. Ziajka, J., Pasiuk-Bronikowska, W., and Warneck, P., Proc. Joint EC/EUROTRAC Workshop'95. Lactoz-Halipp., Rep. EUR 16766 EN, Mirabel Ph., Ed., Brussels, 1996, p. 114.

  67. Warneck, P. and Ziajka, J., Ber. Bunsen-Ges, Phys. Chem., 1995, vol. 9, no. 1, p. 59.

    Google Scholar 

  68. Grgic, I., Dovzan, A., Bercic, G., et al., J. Atmos. Chem., 1998, vol. 29, p. 315.

    Google Scholar 

  69. Grgic, I., Poznic, M., and Bizjak, M., J. Atmos. Chem., 1999, vol. 33, p. 89.

    Google Scholar 

  70. Warneck, P., Ziajka, J., and Pasiuk-Bronikowksa, W., Proc. VI Eur. Symp. on Physico-Chemical Behaviour of Atmospheric Pollutants, Angeletti, G. and Rastelli G., Eds., Varese, 1993, vol. 2, p. 901.

  71. Ziajka, J. and Pasiuk-Bronikowska, W., Proc. EUROTRAC'98 Symp., Borell, P.M. and Borell, P., Eds., Southampton: WITPRESS, 1999, vol. 1, p. 756.

    Google Scholar 

  72. Yermakov, A.N., Zhitomirsky, B.M., Poskrebyshev, G.A., et al., J. Phys. Chem., 1993, vol. 97, no. 41, p. 10712.

    Google Scholar 

  73. Martin, L.R. and Hill, M.W., J. Phys., E: Sci. Instrum., 1987, vol. 20, p. 1387.

    Google Scholar 

  74. Gilbert, B.C. and Stell, J., J. Chem. Soc., Perkin Trans., 1990, vol. 2, no. 2, p. 1281.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ermakov, A.N., Purmal', A.P. Catalytic Mechanism of the “Noncatalytic” Autooxidation of Sulfite. Kinetics and Catalysis 42, 479–489 (2001). https://doi.org/10.1023/A:1010565304435

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010565304435

Keywords

Navigation