Skip to main content
Log in

Low-temperature catalytic decomposition of hydrogen sulfide into hydrogen and diatomic gaseous sulfur

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The thermodynamics of three pathways of the hydrogen sulfide decomposition reaction is considered. In the thermal process, the gas-phase dissociation of hydrogen sulfide yields hydrogen and diatomic singlet sulfur. Over sulfide catalysts, the reaction proceeds via the formation of disulfane (H2S2) as the key surface intermediate. This intermediate then decomposes to release hydrogen into the gas phase, and adsorbed singlet sulfur recombines into cyclooctasulfur. Over metal catalysts, H2S decomposes via dissociation into surface atoms followed by the formation of gaseous hydrogen and gaseous triplet disulfur. The last two pathways are thermodynamically forbidden in the gas phase and can take place at room temperature only on the surface of a catalyst. An alternative mechanism is suggested for hydrogen sulfide assimilation in the chemosynthesis process involving sulfur bacteria. To shift the hydrogen sulfide decomposition equilibrium toward the target product (hydrogen), it is suggested that the reaction should be conducted at room temperature as a three-phase process over a solid catalyst under a layer of a solvent that can dissolve hydrogen sulfide and sulfur. In this case, it is possible to attain an H2S conversion close to 100%. Therefore, hydrogen sulfide can be considered as an inexhaustible source of hydrogen, a valuable chemical and an environmentally friendly energetic product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Veziroglu, T.N. and Sakhin, Sh., Al’tern. Energ. Ekol., 2014, no. 2, p. 12.

    Google Scholar 

  2. Gol’tsov, V.A., Al’tern. Energ. Ekol., 2012, no. 4, p. 15.

    Google Scholar 

  3. James, O.O., Maity, S., Mesubi, M.A., Ogunniran, K.O., Siyanbola, T.O., Sahu, S., and Chaubey, R., Green Chem., 2011, vol. 13, p. 2272.

    Article  CAS  Google Scholar 

  4. Zaman, J. and Chakma, A., Fuel Process. Technol., 1995, vol. 41, p. 159.

    Article  CAS  Google Scholar 

  5. Luinstra, E.A., Hydrogen from H2S: Technologies and Economics, Calgary: Sulfotech Res., 1995.

    Google Scholar 

  6. Armor, J.N., Appl. Catal., A, 1999, vol. 176, p. 159.

    Article  CAS  Google Scholar 

  7. Startsev, A.N., Zakharov, I.I., Voroshina, O.V., and Parmon, V.N., Dokl. Chem., 2004, vol. 399, part 1, p. 283.

    Article  CAS  Google Scholar 

  8. Zakharov, I.I., Startsev, A.N., Voroshina, O.V., Pashigreva, A.V., Chashkova, N.A., and Parmon, V.N., Russ. J. Phys. Chem., 2006, vol. 80, no. 9, p. 1403.

    Article  CAS  Google Scholar 

  9. Startsev, A.N., Kruglyakova, O.V., Chesalov, Yu.A., Ruzankin, S.Ph., Kravtsov, E.A., Larina, T.V., and Paukshtis, E.A., Top. Catal., 2013, vol. 56, p. 969.

    Article  CAS  Google Scholar 

  10. Startsev, A.N. and Kruglyakova, O.V., J. Chem. Chem. Eng., 2013, vol. 7, p. 1007.

    CAS  Google Scholar 

  11. Startsev, A.N., Kruglyakova, O.V., Ruzankin, S.F., Bulgakov, N.N., Chesalov, Yu.A., Kravtsov, E.A., Zheivot, V.I., Larina, T.V., and Paukshtis, E.A., Zh. Fiz. Khim., 2014, vol. 88, no. 6, p. 943.

    Google Scholar 

  12. Swope, W.C., Lee, Y.-P., and Schaefer, H.F., J. Chem. Phys., 1979, vol. 70, no. 2, p. 947.

    Article  CAS  Google Scholar 

  13. Barrow, R.F. and Parcq, R.P., in Elemental Sulfur: Chemistry and Physics, Meyer, B., Ed., New York: Interscience, 1965, p. 251.

    Google Scholar 

  14. Evans, W.H. and Wagman, D.D., J. Res. Natl. Bur. Stand., 1952, vol. 49, no. 3, p. 141.

    Article  CAS  Google Scholar 

  15. Rau, H., Kutty, T.R.N., and de Carvalho, J.R.F.G., J. Chem. Thermodyn., 1973, vol. 5, p. 833.

    Article  CAS  Google Scholar 

  16. Benson, S.W., Chem. Rev., 1978, vol. 78, no. 1, p. 23.

    Article  CAS  Google Scholar 

  17. Abu-Yousef, I.A., J. Sulfur Chem., 2006, vol. 27, no. 1, p. 87.

    Article  CAS  Google Scholar 

  18. Zysman-Colman, E. and Harpp, D.N., Heteroat. Chem., 2007, vol. 18, no. 5, p. 449.

    Article  CAS  Google Scholar 

  19. Startsev, A.N., Bulgakov, N.N., Ruzankin, S.Ph., Kruglyakova, O.V., and Paukshtis, E.A., J. Sulfur Chem., 2015, vol. 36, no. 3, p. 234.

    Article  CAS  Google Scholar 

  20. Startsev, A.N., Sul’fidnye katalizatory gidroochistki: Sintez, struktura, svoistva (Sulfide Hydrotreating Catalysts), Novosibirsk: GEO, 2007.

    Google Scholar 

  21. Startsev, A.N., Catal. Today, 2009, vol. 144, nos. 3–4, p. 350.

    Article  CAS  Google Scholar 

  22. Zakharov, I.I. and Startsev, A.N., J. Phys. Chem. B, 2000, vol. 104, p. 9025.

    Article  CAS  Google Scholar 

  23. Aleshina, G.I., Aksenov, D.G., and Startsev, A.N., Proc. Int. Symp. on Molecular Aspects of Catalysis by Sulfides, Novosibirsk, 1998, p. 100.

    Google Scholar 

  24. Startsev, A.N., Aleshina, G.I., and Aksenov, D.G., Proc. 2nd Int. Symp. on Molecular Aspects of Catalysis by Sulfides, Porqueroles, France, 2001, p. 33

  25. Koestner, R.J., Salmeron, M., Kollin, E.B., and Gland, J.L., Surf. Sci., 1986, vol. 172, no. 3, p. 668.

    Article  CAS  Google Scholar 

  26. Alfonso, D.R., Surf. Sci., 2008, vol. 602, p. 2758.

    Article  CAS  Google Scholar 

  27. Rodriguez, J.A., Hrbek, J., Jirsak, M.T., Chaturvedi, S., and Maiti, A., J. Chem. Phys., 2000, vol. 113, no. 24, p. 11284.

    Article  CAS  Google Scholar 

  28. Poelsema, B., Lenz, K., and Comsa, G., J. Phys.: Condens. Matter, 2010, vol. 22, p. 304006.

    Google Scholar 

  29. Startsev, A.N., Kruglyakova, O.V., Chesalov, Yu.A., Kravtsov, E.A., Serkova, A.N., Suprun, E.A., Salanov, A.N., and Zaikovskii, V.I., Russ. J. Phys. Chem. A, 2015, vol. 89, no. 1, p. 19.

    Article  CAS  Google Scholar 

  30. Meyer, B., Sulfur, Energy, and Environment, Amsterdam: Elsevier, 1977.

    Google Scholar 

  31. Autotrophic Bacteria, Schlegel, H.G. and Bowien, B., Eds., Madison, Wis.: Science and Technology, 1989.

  32. Kleinjan, W.E., de Keizer, A., and Janssen, A.J.H., Top. Curr. Chem., 2003, vol. 230, p. 167.

    Article  CAS  Google Scholar 

  33. Robertson, L.A. and Kuenen, J.G., Prokaryotes, 2006, vol. 2, p. 985.

    Article  Google Scholar 

  34. Sorokin, D.Yu., Banciu, H., Robertson, L.A., and Kuenen, J.G., Prokaryotes, 2006, vol. 2, p. 969.

    Article  Google Scholar 

  35. Guerrero, R., Mas, J., and Pedros-Alio, C., Arch. Microbiol., 1984, vol. 137, p. 350.

    Article  CAS  Google Scholar 

  36. Steudel, R., Holdt, G., Visscher, P.T., and van Gemerden, H., Arch. Microbiol., 1990, vol. 153, p. 432.

    Article  CAS  Google Scholar 

  37. Janssen, A., de Keizer, A., van Aelst, A., Fokkink, R., Yangling, H., and Lettinga, G., Colloids Surf., B, 1996, vol. 6, p. 115.

    Article  CAS  Google Scholar 

  38. Janssen, A.J.H., Lettinga, G., and de Keizer, A., Colloids Surf., A, 1999, vol. 151, p. 389.

    Article  CAS  Google Scholar 

  39. Pickering, J., George, G.N., Yu, E.Y., Brune, D.C., Tuschak, Ch., Overmann, J., Beatty, J.T., and Prince, R.C., Biochemistry, 2001, vol. 40, p. 8138.

    Article  CAS  Google Scholar 

  40. Pasteris, J.D., Freeman, J.J., Goffredi, S.K., and Buck, K.R., Chem. Geol., 2001, vol. 180, p. 3.

    Article  CAS  Google Scholar 

  41. RF Patent 2261838, 2005.

  42. Ukrainian Patent 81088, 2007.

  43. Kazakh Patent 20390, 2008.

  44. US Patent 7611685 B2, 2009.

  45. Khairulin, S.R., Kuznetsov, V.V., Batuev, R.A., Teryaeva, T.N., Tryasunov, B.G., Garifullin, R.G., Filimonov, S.N., Sal’nikov, A.V., and Ismagilov, Z.R., Al’tern. Energ. Ekol., 2014, no. 3, p. 60.

    Google Scholar 

  46. Startsev, A.N., Kruglyakova, O.V., Chesalov, Yu.A., Paukshtis, E.A., Avdeev, V.I., Ruzankin, S.Ph., Zhdanov, A.A., Molina, I.Yu., and Plyasova, L.M., J. Sulfur Chem., 2016, vol. 37, no. 2, p. 229.

    Article  CAS  Google Scholar 

  47. Steliou, K., Acc. Chem. Res., 1991, vol. 24, p. 341.

    Article  CAS  Google Scholar 

  48. Harpp, D.N., Phosphorus, Sulfur Silicon Relat. Elem., 1997, vols. 120–121, p. 41.

    Article  Google Scholar 

  49. Sangalov, Yu.A., Karchevskii, S.G., and Telyashev, R.G., Elementnaya sera (Elemental Sulfur), Ufa: GUP INKhP RB, 2014.

    Google Scholar 

  50. Boreskov, G.K., Geterogennyi kataliz (Heterogeneous Catalysis), Moscow: Nauka, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Startsev.

Additional information

Original Russian Text © A.N. Startsev, 2016, published in Kinetika i Kataliz, 2016, Vol. 57, No. 4, pp. 516–528.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Startsev, A.N. Low-temperature catalytic decomposition of hydrogen sulfide into hydrogen and diatomic gaseous sulfur. Kinet Catal 57, 511–522 (2016). https://doi.org/10.1134/S002315841604011X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002315841604011X

Keywords

Navigation