Skip to main content
Log in

Generation of Supraclusters and Nanoclusters Using Laser Desorption/Ionisation Mass Spectrometry

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Laser desorption/ionisation of discrete molecular clusters combined with time-of-flight (TOF) or Fourier-transform ion cyclotron resonance (FTICR) mass spectrometry affords spectra in which extensive higher mass clusters are observed. The size of the largest cluster aggregates (or supraclusters) is of the same order of magnitude as nanoclusters. The spectra obtained using TOF mass spectrometry sometimes exhibit post-source decay fragmentation, depending upon the operational conditions employed during data acquisition, which, although providing useful data on the ligand dissociation dynamics, complicate spectral interpretation. Complementary FTICR mass spectra are free of such features. The identities of the supra/nanoclusters generated from the molecular cluster precursors have not been conclusively established but are mostly coordinatively unsaturated. Density functional molecular orbital calculations have identified the possible structures of the comparatively simple electronically unsaturated system, [Ru3(CO)6], that provides a clue to the aggregation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Cotter and C. Fenslau (1987). Chem. Rev. 87, 501.

    Google Scholar 

  2. R. Colton, A. DíAgostine, and J. C. Traeger (1995). Mass Spectrom. Rev. 14, 79.

    Google Scholar 

  3. B. F. G. Johnson and J. S. McIndoe, Coord. Chem. Rev., in press.

  4. W. Henderson, J. S. McIndoe, B. K. Nicholson, and P. J. Dyson (1996). Chem. Commun. 1183.

  5. W. Henderson, J. S. McIndoe, B. K. Nicholson, and P. J. Dyson (1998). J. Chem. Soc. Dalton Trans. 519.

  6. F. Hillenkamp, M. Karas, R. C. Beavis, and B. T. Chait (1991). Anal. Chem. 63, 1193.

    Google Scholar 

  7. M. J. Dale, P. J. Dyson, B. F. G. Johnson, C. M. Martin, P. R. R. Langridge-Smith, and R. Zenobi (1995). J. Chem Soc. Chem. Commun. 1689.

  8. M. J. Dale, P. J. Dyson, B. F. G. Johnson, P. R. R. Langridge-Smith, and H. T. Yates (1996). J. Chem. Soc. Dalton Trans. 774.

  9. G. Critchley, P. J. Dyson, B. F. G. Johnson, J. S. McIndoe, R. K. O'Reilly, and P. R. R. Langridge-Smith (1999). Organometallics 18, 4090.

    Google Scholar 

  10. W. J. Dollard, P. J. Dyson, T. Jackson, B. F. G. Johnson, J. S. McIndoe, and P. R. R. Langridge-Smith (1999). Inorg. Commun. 2, 587.

    Google Scholar 

  11. P. J. Dyson, A. K. Hearley, B. F. G. Johnson, J. S. McIndoe, and P. R. R. Langridge-Smith (1999). Inorg. Commun., in press.

  12. P. J. Dyson, A. K. Hearley, B. F. G. Johnson, J. S. McIndoe, and P. R. R. Langridge-Smith, Inorg. Chem. 2, 591.

  13. For example, see (a) S. Jespersen, P. Chaurand, F. J. C. van Strien, B. Spengler, and J. van der Greef (1999). Anal. Chem. 71, 660. (b) J. Vinh, D. Loyaux, V. Redeker, and J. Rossier (1997). Anal. Chem. 69, 3979.

    Google Scholar 

  14. J. Wonka and D. P. Ridge (1984). J. Am. Chem. Soc. 106, 67.

    Google Scholar 

  15. D. A. Fredeen and D. H. Russell (1987). J. Am. Chem. Soc. 109, 3903.

    Google Scholar 

  16. S. L. Mullen and A. G. Marshall (1988). J. Am. Chem. Soc. 110, 1766.

    Google Scholar 

  17. W. K. Meckstroth and D. P. Ridge (1984). Int. J. Mass Spec. and Ion Proc. 106, 4307.

    Google Scholar 

  18. J. Lewis and P. R. Raithby (1995). J. Organomet. Chem. 500, 227.

    Google Scholar 

  19. M. S. Owen (1988). Polyhedron 7, 253.

    Google Scholar 

  20. G. H. Lee, S. H. Huh, and H. I. Jung (1998). J. Mol. Struc. 440, 141.

    Google Scholar 

  21. B. F. G. Johnson (1997). J. Chem. Soc. Dalton Trans. 1473.

  22. A. Rosa, G. Ricciardi, E. J. Baerends, and D. J. Stufkens (1995). Inorg. Chem. 34, 3425.

    Google Scholar 

  23. A. Rosa, G. Ricciardi, E. J. Baerends, and D. J. Stufkens (1996). Inorg. Chem. 35, 2886.

    Google Scholar 

  24. T. A. Barckholtz and B. E. Bursten (1998). J. Am. Chem. Soc. 120, 1926.

    Google Scholar 

  25. H. Jacobsen and T. Ziegler (1996). J. Am. Chem. Soc. 118, 4631.

    Google Scholar 

  26. M. Vitale, M. E. Archer, and B. E. Bursten (1998). Chem. Commun. 179.

  27. E. J. Baerends, D. E. Ellis, and P. Ros (1973). Chem. Phys. 2, 41.

    Google Scholar 

  28. G. te Velde and E. J. Baerends (1992). J. Comp. Phys. 99, 84.

    Google Scholar 

  29. J. Vosko, M. Wilk, and M. Nussair (1980). Can. J. Phys. 58, 1200.

    Google Scholar 

  30. A. Becke (1988). Phys. Rev. A 38, 3098.

    Google Scholar 

  31. J. P. Perdew (1986). Phys. Rev. B 34, 7406.

    Google Scholar 

  32. T. Ziegler and L. Versluis (1988). J. Chem. Phys. 88, 322.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dyson, P.J., McGrady, J.E., Reinhold, M. et al. Generation of Supraclusters and Nanoclusters Using Laser Desorption/Ionisation Mass Spectrometry. Journal of Cluster Science 11, 391–401 (2000). https://doi.org/10.1023/A:1009006016213

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009006016213

Navigation