Skip to main content

Nuclear Magnetic Resonance Spectroscopy: Theory and Applications

  • Chapter
  • First Online:
Modern Techniques of Spectroscopy

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 13))

Abstract

Nuclear Magnetic Resonance (NMR) spectroscopy is considered as most powerful technique for structure elucidation of compounds. It is known as unambiguous technique for identification and structural-determination of organic compounds through its diverse variants. This chapter describes introduction to the basics of NMR technique-theory and technical interpretations, instrumentation, detailed descriptions of proton (1H) and carbon (13C)-NMR with suitable examples, brief introduction of other variants—DEPT, fluorine (19F), phosphorus (31P) of NMR techniques and recent applications of NMR-techniques in various fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. Kemp, Organic Spectroscopy, 3rd edn. (Palgrave, London, 1991), pp. 104–108

    Book  Google Scholar 

  2. (a) H. Günther,NMR Spectroscopy: Basic Principles, Concepts and Applications in Chemistry, 3rd edn. (Wiley, New York, 2013). (b) https://mriquestions.com/who-discovered-nmr.html

  3. R.J. Abraham, J. Fisher, P. Loftus, Introduction to NMR Spectroscopy (Wiley, New York, 2010). ncbi.nlm.nih.gov/pmc/articles/PMC3547585

    Google Scholar 

  4. P.S. Kalsi, Spectroscopy of Organic Compounds (New Delhi, New Age International, 2007), pp. 186–189

    Google Scholar 

  5. H. Kaur, Spectroscopy (Pragati Prakashan, Meerut, 2009).

    Google Scholar 

  6. J. Keeler, Understanding NMR Spectroscopy (Wiley Interscience, New Jersey, 2010).

    Google Scholar 

  7. D.L. Pavia, G.M. Lampman, G.S. Kriz, Introduction to Spectroscopy (Harcourt College publishers, United States, 2001), pp. 106–120

    Google Scholar 

  8. M.H. Levitt, Annu. Rev. Phy. Chem. (2012)

    Google Scholar 

  9. R.S. Macomber, A Complete Introduction to Modern NMR Spectroscopy (Wiley, New York, 1998).

    Google Scholar 

  10. J.B. Stothers, 13C NMR spectroscopy: a brief review. Appl. Spectrosc. 26(1), 1–16 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  11. R.K. Harris, Nuclear Magnetic Resonance Spectroscopy (Longman Publishing Group, London, 1986), pp. 16–43

    Google Scholar 

  12. F.A. Bovey, P.A. Mirau, H.S. Gutowsky, Nuclear Magnetic Resonance Spectroscopy, 2nd edn. (Academic press, United States, 1988).

    Google Scholar 

  13. K.C. Wong, Review of NMR spectroscopy: basic principles, concepts and applications in chemistry, 3rd edn. J. Chem. Educ. 91(8), 1103–1104 (2014)

    Google Scholar 

  14. R.A. Hoffman, F. Forsen, B. Gestblom, Analysis of NMR Spectra (Springer, Berlin, 1971).

    Book  Google Scholar 

  15. (a) P.C. Lauterb, J. Chem. Phys. 26, 217 (1957). (b) Y.R. Sharma, Elementary Organic Spectroscopy (S. Chand Publishing, New Delhi, 2007), pp. 191–247

    Google Scholar 

  16. D.W. Brown, A.J. Floyd, M. Sainsbury, Organic Spectroscopy (Wiley, New York, 1988).

    Google Scholar 

  17. F. Scheinmann (ed.), An Introduction to Spectroscopic Methods for the Identification of Organic Compounds: Nuclear Magnetic Resonance and Infrared Spectroscopy (Pergamon, United Kingdom, 2013)

    Google Scholar 

  18. M. Hasse, H. Meier, B. Zeeh, G.T. Verlag (ed.), Spectroscopic Methods in Organic Chemistry, 2nd edn. (Thieme/Houben-Weyl Series, 2007)

    Google Scholar 

  19. H. Friebolin (ed.), Basic One- and Two-Dimensional NMR Spectroscopy, 5th edn. (Wiley VCH, Unitrd States, 2010)

    Google Scholar 

  20. C.E. Johnson Jr., F.A. Bovey, J. Chem. Phys. 29, 1012 (1958)

    Article  ADS  Google Scholar 

  21. L.M. Jackman, S. Sternhell (eds.), Application of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry, 2nd edn. (Pergamon, England, 2013)

    Google Scholar 

  22. (a) N.F. Ramsey, Phys. Rev. 86, 243 (1952) (b) P. Kanth, H.K. Singh, V. Kumar, S.K. Singh, D.S.S. Rao, S.K. Prasad, B. Singh, J. Mol. Liq. 289, 1–13 (2019)

    Google Scholar 

  23. H.K. Singh, R.K. Gupta, S.K. Singh, D.S.S. Rao, S.K. Prasad, A.S. Achalkumar, B. Singh, J. Mol. Liq. 284, 282–290 (2019)

    Article  Google Scholar 

  24. H.K. Singh, B. Pradhan, S.K. Singh, R. Nandi, D.S.S. Rao, S.K. Prasad, A.S. Achalkumar, B. Singh, Chem. Sel. 3(14), 4027–4037 (2018)

    Google Scholar 

  25. (a) J. Homer, Appl. spectrosc. Revolut. 9(1), 1–132 (2007) (b) P. Laszlo, Prog. Nucl. Magn. Reson. Spectrosc. 3, 231–402 (Elsevier)

    Google Scholar 

  26. P.H. Chien, K.J. Griffith, H. Liu, Z. Gan, Y.-Y. Hu, Annu. Rev. Mater. Res. 50, 493–520 (2020)

    Article  ADS  Google Scholar 

  27. F. Blanc, M. Leskes, C.P. Grey, Acc. Chem. Res. 46, 1952–1963 (2013)

    Article  Google Scholar 

  28. O. Pecher, J. Carretero-González, K.J. Griffith, C.P. Grey, Chem. Mater. 29, 213–242 (2017)

    Article  Google Scholar 

  29. C. Yu, S. Ganapathy, E.R.H.v. Eck, H. Wang, S. Basak, Z. Li, M. Wagemaker, Nat. Commun. 8, 1086 (2017)

    Google Scholar 

  30. S.L. Braunstein, C.M. Caves, R. Jozsa, N. Linden, S. Popescu, R. Schack, Phys. Rev. Lett. 83, 1054–1057 (1999)

    Article  ADS  Google Scholar 

  31. P.J. Basser, J. Mattiello, D. LeBihan, Biophys. J. 66, 259–267 (1994)

    Article  Google Scholar 

  32. R.K. Sharma, K. Sonkar, N. Sinha, P. Rebala, A.E. Albani, A. Behari, D.N. Reddy, A. Farooqui, V.K. Kapoor, PLoS ONE 11, e0166351 (2016)

    Article  Google Scholar 

  33. R.K. Rai, N. Sinha, Anal. Chem. 84, 10005–10011 (2012)

    Article  Google Scholar 

  34. J.K. Nicholson, J.C. Lindon, Nature 455, 1054–1056 (2008)

    Article  ADS  Google Scholar 

  35. J.C. Lindon, J.K. Nicholson, Annu. Rev. Anal. Chem. 1, 45–69 (2008)

    Article  Google Scholar 

  36. O. Beckonert, H.C. Keun, T.M.D. Ebbels, J. Bundy, E. Holmes, J.C. Lindon, J.K. Nicholson, Nat. Protoc. 2, 2692–2703 (2007)

    Article  Google Scholar 

  37. O. Fiehn, in Functional Genomics, edited by C. Town (Springer, Netherlands, 2002), pp. 155–171

    Google Scholar 

  38. K. Sonkar, R.N. Purusottam, N. Sinha, Anal. Chem. 84, 4063–4070 (2012)

    Article  Google Scholar 

  39. A.H. Emwas et al., Metabolites 9, 123 (2019)

    Article  Google Scholar 

  40. A. Viswan, C. Singh, A.M. Kayastha, A. Azim, N. Sinha, An NMR based panorama of the heterogeneous biology of acute respiratory distress syndrome (ARDS) from the standpoint of metabolic biomarkers. NMR Biomed. 33, e4192 (2020). https://doi.org/10.1002/nbm.4192

    Article  Google Scholar 

  41. J.L. Markley, R. Brüschweiler, A.S. Edison, H.R. Eghbalnia, R. Powers, D. Raftery, D.S. Wishart, Curr. Opin. Biotechnol. 43, 34–40 (2017)

    Article  Google Scholar 

  42. D. Ashbaugh, D.B. Bigelow, T. Petty, B. Levine, Lancet 290, 319–323 (1967)

    Article  Google Scholar 

  43. C. Singh et al., Metabolomics 11, 166–174 (2015)

    Article  Google Scholar 

  44. R.K. Rai et al., Metabolomics 9, 667–676 (2013)

    Article  Google Scholar 

  45. A. Viswan, R.K. Sharma, A. Azim, N. Sinha, J. Proteome Res. 15, 302–310 (2016)

    Article  Google Scholar 

  46. C. Singh, R.K. Rai, A. Azim, N. Sinha, A.K. Baronia, Crit. Care 18, 594 (2014)

    Article  Google Scholar 

  47. C. Singh, R.K. Rai, A. Azim, N. Sinha, A.K. Baronia, Crit. Care 17, 430 (2013)

    Article  Google Scholar 

  48. C.R. Evans, A. Karnovsky, M.A. Kovach, T.J. Standiford, C.F. Burant, K.A. Stringer, J. Proteome Res. 13, 640–649 (2014)

    Article  Google Scholar 

  49. A. Viswan, C. Singh, R.K. Rai, A. Azim, N. Sinha, A.K. Baronia, PLoS ONE 12, e0187545 (2017)

    Article  Google Scholar 

  50. A. Viswan, P. Ghosh, D. Gupta, A. Azim, N. Sinha, Sci. Rep. 9, 2108 (2019)

    Article  ADS  Google Scholar 

  51. P. Yang, A.M. Esper, G.S.Martin, in Annual Update in Intensive Care and Emergency Medicine 2020, edited by J.-L. Vincent (Springer International Publishing, Cham, 2020), pp. 91–100

    Google Scholar 

  52. K.H. Mroue, A. Viswan, N. Sinha, A. Ramamoorthy, in Annual Reports on NMR Spectroscopy, edited by G.A. Webb (Academic Press, 2017), pp. 365–413

    Google Scholar 

  53. R.K. Rai, T. Barbhuyan, C. Singh, M. Mittal, M.P. Khan, N. Sinha, N. Chattopadhyay, PLoS ONE 8, e83478 (2014)

    Article  ADS  Google Scholar 

  54. C. Singh, R.K. Rai, N. Sinha, Experimental aspect of solid-state nuclear magnetic resonance studies of biomaterials such as bones. Solid State Nucl. Magn. Reson. 54, 18–25 (2013). https://doi.org/10.1016/j.ssnmr.2013.05.003

    Article  Google Scholar 

  55. C. Singh, R.K. Rai, A.M. Kayastha, N. Sinha, Magn. Reson. Chem. 54, 132–135 (2016)

    Article  Google Scholar 

  56. E. Davies, K.H. Müller, W.C. Wong, C.J. Pickard, D.G. Reid, J.N. Skepper, M.J. Duer, Proc. Natl. Acad. Sci. 111, E1354–E1363 (2014)

    ADS  Google Scholar 

  57. P. Zhu, J. Xu, N. Sahar, M.D. Morris, D.H. Kohn, A. Ramamoorthy, J. Am. Chem. Soc. 131, 17064–17065 (2009)

    Article  Google Scholar 

  58. R.K. Rai, N. Sinha, J. Phys. Chem. C 115, 14219–14227 (2011)

    Article  Google Scholar 

  59. O. Nikel, D. Laurencin, C. Bonhomme, G.E. Sroga, S. Besdo, A. Lorenz, D. Vashishth, J. Phys. Chem. C 116, 6320–6331 (2012)

    Article  Google Scholar 

  60. A.K. Singh et al., Mater. Sci. Eng. C 62, 574–584 (2016)

    Article  Google Scholar 

  61. A.K. Teotia, D.B. Raina, C. Singh, N. Sinha, H. Isaksson, M. Tägil, L. Lidgren, A. Kumar, A.C.S. Appl, Mater. Inter. 9, 6816–6828 (2017)

    Article  Google Scholar 

  62. R.K. Rai, C. Singh, N. Sinha, J. Phys. Chem. B 119, 201–211 (2015)

    Article  Google Scholar 

  63. J. Bella, B. Brodsky, H.M. Berman, Structure 3, 893–906 (1995)

    Article  Google Scholar 

  64. M.D. Shoulders, R.T. Raines, Annu. Rev. Biochem. 78, 929–958 (2009)

    Article  Google Scholar 

  65. C. Singh, N. Sinha, J. Phys. Chem. C 120, 9393–9398 (2016)

    Article  Google Scholar 

  66. C. Singh, R.N. Purusottam, A. Viswan, N. Sinha, J. Phys. Chem. C 120, 21871–21878 (2016)

    Article  Google Scholar 

  67. K.H. Mroue, N. MacKinnon, J. Xu, P. Zhu, E. McNerny, D.H. Kohn, M.D. Morris, A. Ramamoorthy, J. Phys. Chem. B 116, 11656–11661 (2012)

    Article  Google Scholar 

  68. K.H. Mroue, R. Zhang, P. Zhu, E. McNerny, D.H. Kohn, M.D. Morris, A. Ramamoorthy, J. Magn. Reson. 244, 90–97 (2014)

    Article  ADS  Google Scholar 

  69. C. Singh, R.K. Rai, F. Aussenac, N. Sinha, J. Phys. Chem. Lett. 5, 4044–4048 (2014)

    Article  Google Scholar 

  70. W.Y. Chow, B.P. Norman, N.B. Roberts, L.R. Ranganath, C. Teutloff, R. Bittl, M.J. Duer, J.A. Gallagher, H. Oschkinat, Angew. Chem. Int. Ed. 59, 11937–11942 (2020)

    Article  Google Scholar 

  71. N. Tiwari, S. Wegner, A. Hassan, N. Dwivedi, R. Rai, N. Sinha, Magn. Reson. Chem (n/a)

    Google Scholar 

  72. W.Y. Chow et al., Science 344, 742–746 (2014)

    Article  ADS  Google Scholar 

  73. R. Tycko, Annu. Rev. Phy. Chem. 62, 279–299 (2011)

    Article  ADS  Google Scholar 

  74. V.S. Mandala, J.K. Williams, M. Hong, Annu. Rev. Biophys. 47, 201–222 (2018)

    Article  Google Scholar 

  75. M. Hong, Y. Zhang, F. Hu, Ann. Rev. Phys. Chem. 63, 1–24 (2012)

    Article  ADS  Google Scholar 

  76. J. Kragelj, V. Ozenne, M. Blackledge, M.R. Jensen, Chem. Phys. Chem. 14, 3034–3045 (2013)

    Article  Google Scholar 

  77. M.R. Jensen, R.W.H. Ruigrok, M. Blackledge, Curr. Opin. Struc. Biol. 23, 426–435 (2013)

    Article  Google Scholar 

  78. S.K. Dutta, Y. Yao, F.M. Marassi, J. Phys. Chem. B 121, 7561–7570 (2017)

    Article  Google Scholar 

  79. F.M. Marassi, Y. Ding, C.D. Schwieters, Y. Tian, Y. Yao, J. Biomol. NMR 63, 59–65 (2015)

    Article  Google Scholar 

  80. S.H. Park, J. Wu, Y. Yao, C. Singh, Y. Tian, F.M. Marassi, S.J. Opella, Biochim. Biophys. Acta Biomembr. 1862, 183333 (2020)

    Article  Google Scholar 

  81. J. Radoicic, S.H. Park, S.J. Opella, Biophys. J. 115, 22–25 (2018)

    Article  ADS  Google Scholar 

  82. S.H. Park, S. Berkamp, G.A. Cook, M.K. Chan, H. Viadiu, S.J. Opella, Biochemistry 50, 8983–8985 (2011)

    Article  Google Scholar 

  83. M. Lee, H. Yao, B. Kwon, A.J. Waring, P. Ruchala, C. Singh, M. Hong, J. Mol. Biol. 430, 695–709 (2018)

    Article  Google Scholar 

  84. J.R. Schnell, J.J. Chou, Nature 451, 591–595 (2008)

    Article  ADS  Google Scholar 

  85. S.D. Cady, K. Schmidt-Rohr, J. Wang, C.S. Soto, W.F. DeGrado, M. Hong, Nature 463, 689–692 (2010)

    Article  ADS  Google Scholar 

  86. S.D. Cady, W. Luo, F. Hu, M. Hong, Biochemistry 48, 7356–7364 (2009)

    Article  Google Scholar 

  87. M. Yi, T.A. Cross, H.-X. Zhou, Proc. Natl. Acad. Sci. 106, 13311–13316 (2009)

    Article  ADS  Google Scholar 

  88. V.S. Mandala, S.-Y. Liao, B. Kwon, M. Hong, J. Mol. Biol. 429, 2192–2210 (2017)

    Article  Google Scholar 

  89. A. Lange, K. Giller, S. Hornig, M.-F. Martin-Eauclaire, O. Pongs, S. Becker, M. Baldus, Nature 440, 959–962 (2006)

    Article  ADS  Google Scholar 

  90. S.H. Park et al., Nature 491, 779–783 (2012)

    Article  ADS  Google Scholar 

  91. N.W. Rigel, T.J. Silhavy, Curr. Opin. Microbiol. 15, 189–193 (2012)

    Article  Google Scholar 

  92. C. Pinto, D. Mance, T. Sinnige, M. Daniëls, M. Weingarth, M. Baldus, Nat. Commun. 9, 4135 (2018)

    Article  ADS  Google Scholar 

  93. K. Shin, J.E. Kent, C. Singh, L.M. Fujimoto, J. Yu, Y. Tian, W. Im, F.M. Marassi, Proc. Natl. Acad. Sci. 117, 18504–18510 (2020)

    Article  Google Scholar 

  94. M.T. Eddy, Y. Su, R. Silvers, L. Andreas, L. Clark, G. Wagner, G. Pintacuda, L. Emsley, R.G. Griffin, J. Biomol. NMR 61, 299–310 (2015)

    Article  Google Scholar 

  95. C. Ma, S.J. Opella, J. Magn. Reson 146, 381–384 (2000)

    Article  ADS  Google Scholar 

  96. S. Hiller, G. Wagner, Curr. Opin. Struct. Biol. 19, 396–401 (2009)

    Article  Google Scholar 

  97. S. Lee, M.F. Mesleh, S.J. Opella, J. Biomol. NMR 26, 327–334 (2003)

    Article  Google Scholar 

  98. T.K. Ritchie, Y.V. Grinkova, T.H. Bayburt, I.G. Denisov, J.K. Zolnerciks, W.M. Atkins, S.G. Sligar, Methods Enzymol. 464, 211–231 (2009)

    Article  Google Scholar 

  99. I.G. Denisov, Y.V. Grinkova, A.A. Lazarides, S.G. Sligar, J. Am. Chem. Soc. 126, 3477–3487 (2004)

    Article  Google Scholar 

  100. M.L. Nasr et al., Nat. Methods 14, 49–52 (2017)

    Article  Google Scholar 

  101. A.D. Buckingham, Can. J. Chem. 38(2), 300–330 (1960)

    Article  Google Scholar 

  102. C. Singh et al., Mol. Microbiol (n/a)

    Google Scholar 

  103. M. Zhang, R. Huang, R. Ackermann, S.-C. Im, L. Waskell, A. Schwendeman, A. Ramamoorthy, Angew. Chem. Int. Ed. 55, 4497–4499 (2016)

    Article  Google Scholar 

  104. T. Ravula, N.Z. Hardin, A. Ramamoorthy, Chem. Phys. Lipids 219, 45–49 (2019)

    Article  Google Scholar 

  105. M. Ohmenhaeuser, Y.B. Monakhova, T. Kuballa, D.W. Lachenmeier, I.S.R.N. Anal, Chem. 2013, 825318 (2013)

    Google Scholar 

  106. M. Lolli, D. Bertelli, M. Plessi, A.G. Sabatini, C. Restani, J. Agric. Food Chem. 56, 1298–1304 (2008)

    Article  Google Scholar 

  107. R.d.O.R. Ribeiro, E.T. Mársico, C.d.S. Carneiro, M.L.G. Monteiro, C.C. Júnior, E.F.O.d. Jesus, J. Food Eng. 135, 39–43 (2014).

    Google Scholar 

  108. E. Schievano, M. Sbrizza, V. Zuccato, L. Piana, M. Tessari, Food Chem. 309, 125788 (2020)

    Article  Google Scholar 

  109. C. He, Y. Liu, H. Liu, X. Zheng, G. Shen, J. Feng, Food Res. Int. 130, 108936 (2020)

    Article  Google Scholar 

  110. E.O. Olawode, R. Tandlich, G. Cambray, Molecules 23, 578 (2018)

    Article  Google Scholar 

  111. M.N. Mădaş, L.A. Mărghitaş, D.S. Dezmirean, O. Bobiş, O. Abbas, S. Danthine, F. Francis, E. Haubruge, B.K. Nguyen, Food Rev. Int. 36, 215–240 (2020)

    Article  Google Scholar 

  112. R. Sacchi, F. Addeo, L. Paolillo, Mag. Reson. Chem. 35, S133–S145 (1997)

    Article  Google Scholar 

  113. M. Nilsson, I.F. Duarte, C. Almeida, I. Delgadillo, B.J. Goodfellow, A.M. Gil, G.A. Morris, J. Agric. Food Chem. 52, 3736–3743 (2004)

    Article  Google Scholar 

  114. U.K. Sundekilde, L.B. Larsen, H.C. Bertram, Metabolites 3, 204–222 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

MR and SKS are grateful to the Department of Science and Technology, New Delhi, India (Project No. 000628/001) for providing financial assistance. CS acknowledges the financial support from Banaras Hindu University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sachin Kumar Singh or Chandan Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rashid, M., Singh, S.K., Singh, C. (2021). Nuclear Magnetic Resonance Spectroscopy: Theory and Applications. In: Singh, D.K., Pradhan, M., Materny, A. (eds) Modern Techniques of Spectroscopy. Progress in Optical Science and Photonics, vol 13. Springer, Singapore. https://doi.org/10.1007/978-981-33-6084-6_18

Download citation

Publish with us

Policies and ethics