Skip to main content

Advertisement

Log in

Density function theory calculation to study the oxidation potential of electron-donating compounds; affirming the oxidation mechanism by NICS calculations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The manuscript describes a method for understanding the correlation of structural features and first oxidation potentials \(\left({E}_{ox}^{1}\right)\) of electron-donating compounds (EDCs) with tetrathiafulvalene (TTF), dithiadiazafulvalenes (DTDAF), and tetraazafulvalene (TAF) frameworks. The density functional theory (DFT) procedure at B3LYP (6–31 + g(d)) was used for geometric optimization, given the large dimensions of the molecules studied, and their high structural similarity. First of all, the correlation between the oxidation potential and the highest occupied molecular orbital (HOMO) energy level as an effective quantum chemical descriptor was examined. Then, nucleus-independent chemical shifts (NICSs) calculation was applied to affirm the oxidation mechanism and interpret the effect of replacing the sulfur atoms by nitrogen, on the oxidation process. Finally, a more comprehensive investigation of structural features that affect the oxidation potential, topological, geometrical, constitutional, as well as, electrostatic, charged partial surface area, quantum-chemical, molecular orbital, and thermodynamic descriptors was calculated. A predictive model was developed based on the genetic algorithm multivariate linear regression (GA-MLR). There was an outstanding agreement between the theoretical and the experimental values obtained for the first oxidation potentials of the test set (Q2Ext = 0.981).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data is in the article.

Code availability

Not applicable.

References

  1. Murphy JA, Khan TA, Zhou SZ, Thomson DW, Mahesh M (2005) Highly efficient reduction of unactivated aryl and alkyl iodides by a ground-state neutral organic electron donor. Angew Chem, Int Ed Engl 44:1356–1360. https://doi.org/10.1002/anie.200462038

    Article  CAS  Google Scholar 

  2. Finley KT (1964) The acyloin condensation as a cyclization method. Chem Rev 64:573–589. https://doi.org/10.1021/cr60231a004

    Article  CAS  Google Scholar 

  3. Wudl F, Smith GM, Hufnagel EJ (1970) Bis-1,3-dithiolium chloride: an unusually stable organic radical cation. J Chem Soc, Chem Commun 21:1453–1454. https://doi.org/10.1039/C29700001453

    Article  Google Scholar 

  4. Tormos GV, Bakker MG, Wang P, Lakshmikantham MV, Cava MP, Metzger RM (1995) Dithiadiazafulvalenes-new strong electron donors. Synthesis, Isolation, Properties, and EPR Studies. J Am Chem Soc 117:8528–8535. https://doi.org/10.1021/ja00138a006

    Article  CAS  Google Scholar 

  5. Thummel RP, Goulle V, Chen B (1989) Bridged derivatives of 2,2’-biimidazole. J Org Chem 54:3057–3061. https://doi.org/10.1021/jo00274a019

    Article  CAS  Google Scholar 

  6. Ferraris J, Cowan DO, Walatka V, Perlstein JH (1973) Electron transfer in a new highly conducting donor-acceptor complex. J Am Chem Soc 95:948–949. https://doi.org/10.1021/ja00784a066

    Article  CAS  Google Scholar 

  7. Coleman LB, Cohen MJ, Sandman DJ, Yamagishi FG, Garito AF, Heeger AJ (1973) Superconducting fluctuations and the peierls instability in an organic solid. Solid State Commun 12:1125–1132. https://doi.org/10.1016/0038-1098(73)90127-0

    Article  CAS  Google Scholar 

  8. Pourbasheer E, Vahdani S, Aalizadeh R, Banaei A, Ganjali MR (2015) QSAR study of prolylcarboxypeptidase inhibitors by genetic algorithm: multiple linear regressions. J Chem Sci 127:1243–1251. https://doi.org/10.1007/s12039-015-0893-z

    Article  CAS  Google Scholar 

  9. Pourbasheer E, Banaei A, Aalizadeh R, Ganjali MR, Norouzi P, Shadmanesh J, Methenitis C (2015) Prediction of PCE of fullerene (C-60) derivatives as polymer solar cell acceptors by genetic algorithm-multiple linear regression. J Ind Eng Chem 21:1058–1067. https://doi.org/10.1016/j.jiec.2014.05.016

    Article  CAS  Google Scholar 

  10. Pourbasheer E, Aalizadeh R, Ganjali MR, Norouzi P (2015) Prediction of superoxide quenching activity of fullerene (C-60) derivatives by genetic algorithm-support vector machine. Fullerenes Nanotubes Carbon Nanostruct 23:290–299. https://doi.org/10.1080/1536383x.2013.798728

    Article  CAS  Google Scholar 

  11. Rafiei H, Khanzadeh M, Mozaffari S, Bostanifar MH, Avval ZM, Aalizadeh R, Pourbasheer E (2016) QSAR study of HCV NS5B polymerase inhibitors using the genetic algorithm-multiple linear regression (GA-MLR). Excli J 15:38–53. https://doi.org/10.17179/excli2015-731

    Article  Google Scholar 

  12. Beheshti A, Pourbasheer E, Nekoei M, Vahdani S (2016) QSAR modeling of antimalarial activity of urea derivatives using genetic algorithm-multiple linear regressions. J Saudi Chem Soc 20:282–290. https://doi.org/10.1016/j.jscs.2012.07.019

    Article  CAS  Google Scholar 

  13. Pourbasheer E, Aalizadeh R, Ebadi A, Ganjali MR (2015) 3D-QSAR Analysis of MCD inhibitors by CoMFA and CoMSIA. Comb Chem High Throughput Screening 18:751–766. https://doi.org/10.2174/1386207318666150803141738

    Article  CAS  Google Scholar 

  14. Pourbasheer E, Aalizadeh R, Tabar SS, Ganjali MR, Norouzi P, Shadmanesh J (2014) 2D and 3D quantitative structure activity relationship study of hepatitis C virus NS5B polymerase inhibitors by comparative molecular field analysis and comparative molecular similarity indices analysis methods. J Chem Inf Model 54:2902–2914. https://doi.org/10.1021/ci500216c

    Article  CAS  Google Scholar 

  15. Riahi S, Ganjali MR, Norouzi P, Jafari F (2008) Application of GA-MLR, GA-PLS and the DFT quantum mechanical (QM) calculations for the prediction of the selectivity coefficients of a histamine-selective electrode. Sens Actuators B 132:13–19. https://doi.org/10.1016/j.snb.2008.01.009

    Article  CAS  Google Scholar 

  16. Pourbasheer E, Aalizadeh R, Ganjali MR (2019) QSAR study of CK2 inhibitors by GA-MLR and GA-SVM methods. Arab J Chem 12:2141–2149. https://doi.org/10.1016/j.arabjc.2014.12.021

    Article  CAS  Google Scholar 

  17. Pourbasheer E, Aalizadeh R, Ganjali MR, Norouzi P (2014) QSAR study of alpha 1 beta 4 integrin inhibitors by GA-MLR and GA-SVM methods. Struct Chem 25:355–370. https://doi.org/10.1007/s11224-013-0300-7

    Article  CAS  Google Scholar 

  18. Paukku Y, Hill G (2011) Theoretical determination of one-electron redox potentials for DNA bases, base pairs, and stacks. J Phys Chem A 115:4804–4810. https://doi.org/10.1021/jp201281t

    Article  CAS  Google Scholar 

  19. Galstyan A, Knapp EW (2009) Accurate redox potentials of mononuclear iron, manganese, and nickel model complexes. J Comput Chem 30:203–211. https://doi.org/10.1002/jcc.21029

    Article  CAS  Google Scholar 

  20. Phillips KL, Sandler SI, Chiu PC (2011) A method to calculate the one-electron reduction potentials for nitroaromatic compounds based on gas-phase quantum mechanics. J Comput Chem 32:226–239. https://doi.org/10.1002/jcc.21608

    Article  CAS  Google Scholar 

  21. Beheshti A, Riahi S, Ganjali MR (2009) Quantitative structure-property relationship study on first reduction and oxidation potentials of donor-substituted phenylquinolinylethynes and phenylisoquinolinylethynes: Quantum chemical investigation. Electrochim Acta 54:5368–5375. https://doi.org/10.1016/j.electacta.2009.04.020

    Article  CAS  Google Scholar 

  22. Shamsipur M, Siroueinejad A, Hemmateenejad B, Abbaspour A, Sharghi H, Alizadeh K, Arshadi S (2007) Cyclic voltammetric, computational, and quantitative structure-electrochemistry relationship studies of the reduction of several 9,10-anthraquinone derivatives. J Electroanal Chem 600:345–358. https://doi.org/10.1016/j.jelechem.2006.09.006

    Article  CAS  Google Scholar 

  23. Toropov A, Nesmerak K, Raska I Jr, Waisser K, Palat K (2006) QSPR modeling of the half-wave potentials of benzoxazines by optimal descriptors calculated with the SMILES. Comput Biol Chem 30:434–437. https://doi.org/10.1016/j.compbiolchem.2006.09.003

    Article  CAS  Google Scholar 

  24. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Montgomery JA Jr (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363. https://doi.org/10.1002/jcc.540141112

    Article  CAS  Google Scholar 

  25. Bordwell FG, Satish AV (1991) Acidities of C2 hydrogen atoms in thiazolium cations and reactivities of their conjugate bases. J Am Chem Soc 113:985–990. https://doi.org/10.1021/ja00003a036

    Article  CAS  Google Scholar 

  26. Bellec N, Guerin DJ, Lorcy D, Robert A, Carlier R, Tallec A, Shono T, Toftlund H (1999) Chemical and electrochemical investigations on thiazolium salts: a route to powerful donors in the dithiadiazafulvalene series. Acta Chem Scand 53:861–866. 103891/ACTACHEMSCAND53–0861

  27. Guerin D, Carlier R, Guerro M, Lorcy D (2003) Crown-ether annelated dithiadiazafulvalenes. Tetrahedron 59:5273–5278. https://doi.org/10.1016/s0040-4020(03)00767-1

    Article  CAS  Google Scholar 

  28. Bellec N, Lorcy D, Robert A, Carlier R, Tallec A (1999) Cathodic synthesis of powerful electron pi-donors including dithiadiazafulvalenes. J Electroanal Chem 462:137–142. https://doi.org/10.1016/s0022-0728(98)00396-9

    Article  CAS  Google Scholar 

  29. Hünig S, Scheutzow D, Schlaf H (1973) Über zweistufige Redoxsysteme, IX1) Polarographie2) und Spektroskopie heterocyclisch substituierter Äthylene und ihrer höheren Oxidationsstufen. Liebigs Ann Chem 765:126–132. https://doi.org/10.1002/jlac.19727650113

    Article  Google Scholar 

  30. Shi ZQ, Thummel RP (1994) BRIDGED BIBENZIMIDAZOLIUM SALTS AND THEIR CONVERSION TO UREAPHANES. Tetrahedron Lett 35:33–36. https://doi.org/10.1016/0040-4039(94)88155-3

    Article  CAS  Google Scholar 

  31. Thanikaivelan P, Subramanian V, Rao JR, Nair BU (2000) Application of quantum chemical descriptor in quantitative structure activity and structure property relationship. Chem Phys Lett 323:59–70. https://doi.org/10.1016/s0009-2614(00)00488-7

    Article  CAS  Google Scholar 

  32. JH H, (1975) Adaption in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor, MI

    Google Scholar 

  33. Nekoei M, Mohammadhosseini M, Pourbasheer E (2021) A quantitative structure-activity relationship study on CXL017 derivatives as effective drugs for cancer treatment. J Chin Chem Soc 68:1972–1986. https://doi.org/10.1002/jccs.202100050

    Article  CAS  Google Scholar 

  34. Pourbasheer E, Aalizadeh R, Ganjali MR, Norouzi P, Shadmanesh J (2014) QSAR study of ACK1 inhibitors by genetic algorithm-multiple linear regression (GA-MLR). J Saudi Chem Soc 18:681–688. https://doi.org/10.1016/j.jscs.2014.01.010

    Article  CAS  Google Scholar 

  35. Todeschini R, Consonni V, Mauri A, Pavan M (2004) Detecting “bad” regression models: multicriteria fitness functions in regression analysis. Anal Chim Acta 515:199–208. https://doi.org/10.1016/j.aca.2003.12.010

    Article  CAS  Google Scholar 

  36. Schleyer PV, Maerker C, Dransfeld A, Jiao HJ, Hommes N (1996) Nucleus-independent chemical shifts: A simple and efficient aromaticity probe. J Am Chem Soc 118:6317–6318. https://doi.org/10.1021/ja960582d

    Article  CAS  Google Scholar 

  37. Lazzeretti P (2004) Assessment of aromaticity via molecular response properties. Phys Chem Chem Phys 6:217–223. https://doi.org/10.1039/b311178d

    Article  CAS  Google Scholar 

  38. Aihara J (2002) Nucleus-independent chemical shifts and local aromaticities in large polycyclic aromatic hydrocarbons. Chem Phys Lett 365:34–39. https://doi.org/10.1016/s0009-2614(02)01415-x

    Article  CAS  Google Scholar 

  39. Wolinski K, Hinton JF, Pulay P (1990) Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 112:8251–8260. https://doi.org/10.1021/ja00179a005

    Article  CAS  Google Scholar 

  40. Dance I (2006) The correlation of redox potential, HOMO energy, and oxidation state in metal sulfide clusters and its application to determine the redox level of the FeMo-co active-site cluster of nitrogenase. Inorg Chem 45:5084–5091. https://doi.org/10.1021/ic060438l

    Article  CAS  Google Scholar 

  41. Hünig S, Berneth H (1980) Two step reversible redox systems of the weitz type. ChemInform 12:1–44. https://doi.org/10.1007/BFb0034356

    Article  Google Scholar 

  42. Netzeva TI, Worth A, Aldenberg T, Benigni R, Cronin MT, Gramatica P, Jaworska JS, Kahn S, Klopman G, Marchant CA, Myatt G, Nikolova-Jeliazkova N, Patlewicz GY, Perkins R, Roberts D, Schultz T, Stanton DW, van de Sandt JJ, Tong W, Veith G, Yang C (2005) Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships. Altern Lab Anim 33:155–173. https://doi.org/10.1177/026119290503300209

    Article  CAS  Google Scholar 

  43. Eriksson L, Jaworska J, Worth AP, Cronin MTD, McDowell RM, Gramatica P (2003) Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ Health Perspect 111:1361–1375. https://doi.org/10.1289/ehp.5758

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Abolghasem beheshti: supervising the overall research, DFT calculation, manuscript preparation. Eslam Pourbasheer: developed the QSPR, manuscript preparation. Mohammad Reza Ganjali: preparation of the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Abolghasem Beheshti.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beheshti, A., Pourbasheer, E. & Ganjali, M.R. Density function theory calculation to study the oxidation potential of electron-donating compounds; affirming the oxidation mechanism by NICS calculations. J Mol Model 29, 32 (2023). https://doi.org/10.1007/s00894-022-05431-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05431-1

Keywords

Navigation