Skip to main content
Log in

Geometry and Thermal Regulation of GMA Welding via Conventional and Neural Adaptive Control

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

This paper investigates the application of conventional and neural adaptive control schemes to Gas Metal Arc (GMA) welding. The goal is to produce welds of high quality and strength. This can be achieved through proper on-line control of the geometrical and thermal characteristics of the process. The welding process is variant in time and strongly nonlinear, and is subject to many defects due to improper regulation of parameters like arc voltage and current, or travel speed of the torch. Adaptive control is thus naturally a very good candidate for the regulation of the geometrical and thermal characteristics of the welding process. Here four adaptive control techniques are reviewed and tested, namely: model reference adaptive control (MRAC), pseudogradient adaptive control (PAC), multivariable self-tuning adaptive control (STC), and neural adaptive control (NAC). Extensive numerical results are provided, together with a discussion of the relative merits and limitations of the above techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hunt, V. D.: Industrial Robotics Handbook, Industrial Press Inc., New York, 1983.

    Google Scholar 

  2. Tzafestas, S. G. (ed.): Intelligent Robotic Systems, Marcel Dekker, New York, 1991.

    Google Scholar 

  3. Tzafestas, S. G. (ed.): Applied Control: Current Trends and Modern Methodologies, Marcel Dekker, New York, 1993.

    Google Scholar 

  4. Tzafestas, S. G. and Verbruggen, H. B. (eds): Artificial Intelligence in Industrial Decision Making, Control and Automation, Kluwer Academic Publishers, Dordrecht/Boston, 1995.

    Google Scholar 

  5. Doumanidis, C. and Hardt, D. E.: A model for in-process control of thermal properties during welding, ASME J. Dynamic Syst. Meas. and Control 111(1989), 40–50.

    Google Scholar 

  6. Doumanidis, C. and Hardt, D. E.: Multivariable adaptive control of thermal properties during welding, ASME J. Dynamic Syst. Meas. and Control 113(1991), 82–92.

    Google Scholar 

  7. Doumanidis, C.: Multiplexed and distributed control of automated welding, IEEE Control Systems Magaz., August (1994), 13–24.

  8. Nishar, D. V., Schiano, J. L., Perkins, W. R., and Weber, R. A.: Adaptive control of temperature in arc welding, IEEE Control Systems Magaz., August (1994), 4–12.

  9. Henderson, D. E., Kokotovitch, P. V., Schiano, J. L., and Rhode, D. S.: Adaptive control of an arc welding process, in: Proc. 1991 American Control Conference, Vol. 1, 1991, pp. 723–728.

    Google Scholar 

  10. Rhode, D. S. and Kokotovitch, P. V.: Parameter convergence conditions independent of plant order, in: Proc. 1989 American Control Conference, Vol. 1, 1989, pp. 981–986.

    Google Scholar 

  11. Lightbody, G. and Irwin, G. W.: Direct neural model reference adaptive control, IEE Proc.–Control Theory and Appl. 142(1995), 31–43.

    Google Scholar 

  12. Slotine, J. and Welping, L.: Applied Nonlinear Control, Prentice-Hall, New Jersey, 1991.

    Google Scholar 

  13. Narendra, K. S. and Lin, Y.: Stable adaptive control, IEEE Trans. Automat. Control, AC-25(3) (June 1980).

  14. Suzuki, A., Hardt, D. E., and Valavani, L.: Application of adaptive control theory to GTA weld geometry regulation, ASME J. Dynamic Syst. Meas. and Control 113(1991), 93–103.

    Google Scholar 

  15. Song, J. B. and Hardt, D. E.: Dynamic modeling and adaptive control of the gas metal arc welding process, ASME J. Dynamic Syst. Meas. and Control 116(1994), 405–413.

    Google Scholar 

  16. Haykin, S.: Adaptive Filter Theory, Prentice-Hall, New Jersey, 1991.

    Google Scholar 

  17. Tzafestas, S. G.: Digital PID and self-tuning control, in: S. G. Tzafestas (ed.), Applied Digital Control, North Holland, Amsterdam, 1985, pp. 1–49.

    Google Scholar 

  18. Haykin, S: Neural Networks: A Comprehensive Foundation, Macmillan College Publishing Company, Toronto, 1994.

    Google Scholar 

  19. Miller, W. T., Sutton, R. S., and Werbos, P. J.: Neural Networks for Control, MIT Press, Cambridge, MA, 1990.

    Google Scholar 

  20. Tzafestas, S. G.: Neural networks in robot control, in: Artificial Intelligence in Industrial Decision Making, Control and Automation, Kluwer, Dordrecht/Boston, 1995, pp. 327–387.

    Google Scholar 

  21. Kawato, M. Furukawa, K., and Suzuki, R.: A Hierarchical neural network model for control and learning of voluntary movement, Biol. Cybern. 57(1987), 169–185.

    Google Scholar 

  22. Kawato, M., Uno, Y., Isobe, M., and Suzuki, R.: A Hierarchical neural network model for voluntary movement with application to robotics, IEEE Control Systems Magaz., April (1988), 8–16.

  23. Ramaswamy, K., Cook, G. E., Andersen, K., and Karsai, G.: Neural networks in GTA weld modeling and control, in: Proc. American Control Conference, Vol. 1, 1989, pp. 62–67.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tzafestas, S.G., Rigatos, G.G. & Kyriannakis, E.J. Geometry and Thermal Regulation of GMA Welding via Conventional and Neural Adaptive Control. Journal of Intelligent and Robotic Systems 19, 153–186 (1997). https://doi.org/10.1023/A:1007968630038

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007968630038

Navigation