Skip to main content
Log in

Anodic oxidation of copper cyanide on graphite anodes in alkaline solution

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The anodic oxidation of copper cyanide has been studied using a graphite rotating disc with reference to cyanide concentration (0.05–4.00 M), CN:Cu mole ratio (3–12), temperature (25–60 °C) and hydroxide concentration (0.01–0.25 M). Copper had a significant catalytic effect on cyanide oxidation. In the low polarization region (about 0.4 V vs SCE or less), cuprous cyanide is oxidized to cupric cyanide complexes which further react to form cyanate. At a CN:Cu ratio of 3 and [OH] = 0.25 M, the Tafel slope was about 0.12 V decade−1. Cu(CN)3 2− was discharged on the electrode and the reaction order with respect to the predicted concentration of Cu(CN)3 2− is one. With increasing CN:Cu mole ratio and decreasing pH, the dominant discharged species shifted to Cu(CN)4 3−. Under these conditions, two Tafel slopes were observed with the first one being 0.060 V decade−1 and the second one 0.17–0.20 V decade−1. In the high polarization region (about 0.4 V vs SCE or more), cuprous cyanide complexes were oxidized to copper oxide and cyanate. Possible reaction mechanism was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.H. Clevenger and M.I. Hall, Trans. Am. Electrochem. Soc. 24 (1914) 271.

    Google Scholar 

  2. D.T. Sawyer and R.J. Day, J. Electroanal. Chem. 5 (1963) 195.

    Google Scholar 

  3. A.T. Kuhn, J. Appl. Chem. Biotechnol. 21 (1972) 29.

    Google Scholar 

  4. J.J. Byerley and K. Enns, U.S.N.I.T.S., A.D. Rep. PB235588 (1974), pp. 1–49.

  5. S. Yoshimura, A. Katagiri, Y. Deguchi and S. Yoshizawa, Bull.Chem. Jpn. 53 (1980) 2434.

    Google Scholar 

  6. S. Yoshimura, A. Katagiri, Y. Deguchi and S. Yoshizawa, Bull.Chem. Jpn. 53 (1980) 2437.

    Google Scholar 

  7. A. Katagiri, S. Yoshimura, Y. Deguchi and S. Yoshizawa, in W.E. O'Grady et al. (Eds), The Proceedings of the Symposium on Electrocatalysis, (PV 82-2) (1982), pp. 336–346.

  8. M.C. Dart, J.D. Jentles and D.G. Renton, J. Appl. Chem. 13 (1963) 55.

    Google Scholar 

  9. J. Drogen and L. Pasek, Plat. Surfa. Finish. 18 (1964) 310.

    Google Scholar 

  10. S. Ehdaie, M. Fleischmann and R.E.W. Jansson, J. Appl.Electrochem. 12 (1982) 75.

    Google Scholar 

  11. T.C. Tan, W.K. TEO and D-T. Chin, Chem. Eng. Commun. 38 (1985) 125.

    Google Scholar 

  12. F. Hine, M. Yasuda, T. Iida and Y. Ogata, Electrochim. Acta 31 (1986) 1389.

    Google Scholar 

  13. J. Hwang, Y. Wang and C. Wan, J. Appl. Electrochem. 17 (1987)684.

    Google Scholar 

  14. N.L. Piret and H.J. Schippers, ‘Extraction Metallurgy 89’ (1989), pp. 1041–1080.

  15. B. Wells and D.C. Johnson, J. Electrochem. Soc. 137 (1990) 2785.

    Google Scholar 

  16. M.L. Lin, Y.Y. Wang and C.C. Wan, J. Appl. Electrochem. 22 (1992) 1197.

    Google Scholar 

  17. C.S. Hofseth and T.W. Chapman, J. Electrochem. Soc. 139 (1992) 2525.

    Google Scholar 

  18. D.B. Dreisinger, J. Ji and B. Wassink, The Proceeding of Randol Gold Forum, Perth (1995), pp. 239–244.

  19. D.B. Dreisinger and J. Lu, unpublished results (1997).

  20. J. Lu, D.B. Dresinger and W.C. Cooper, J. Appl. Electrochem. (1999) 1161.

  21. R.M. Izatt, H.D. Johnston, G.D. Watt and J.J. Christensen, Inorg.Chem. 6 (1967) 132.

    Google Scholar 

  22. M.T. Beck, Pure Appl. Chem. 59 (1987) 1703.

    Google Scholar 

  23. J. Lu, D.B. Dresinger and W.C. Cooper, Hydrometallury, in press.

  24. P. Henderson, Z. Phys. Chem. 59 (1907) 118 and 63 (1908) 325.

    Google Scholar 

  25. A.G. Sharpe, ‘The Chemistry of Cyano Complexes of the Transition Metals’ (Academic Press, London, 1976), pp. 271–272.

    Google Scholar 

  26. O. Monsted and J. Bjerrum, Acta Chem. Scand. 21 (1967) 116.

    Google Scholar 

  27. J.O'M. Bockris and A.K.N. Reddy, in ‘Modern Electrochemistry’, Vol. 2, (Plenum Press, New York, 1970), chapter 9.

    Google Scholar 

  28. R. Dolhez, Bull. Soc. R. Sci. Liege 30 (1961) 446.

    Google Scholar 

  29. B. Miller, J. Electrochem. Soc. 116 (1969) 1675.

    Google Scholar 

  30. F. Beck and U. Barsch, J. Electroanal. Chem. 282 (1990) 175.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, J., Dreisinger, D. & Cooper, W. Anodic oxidation of copper cyanide on graphite anodes in alkaline solution. Journal of Applied Electrochemistry 32, 1119–1129 (2002). https://doi.org/10.1023/A:1021245618401

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021245618401

Navigation