Skip to main content
Log in

Weldability of Ferritic Ductile Cast Iron Using Full Factorial Design of Experiment

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The weldability of a ferritic ductile cast iron was investigated as a function of diferent consumables and welding conditions. A 23 full factorial experimental design was used to analyze the effect of factors and their interactions on ultimate tensile strength of weldments. The shielded metal arc welding (SMAW) process was used with two types of consumables (E7018 and ENi-CI) under eight diferent conditions using asGcast samples. The microstructural evolution and fracture mechanisms were investigated by optical microscopy and scanning electron microscopy (SEM), respectively. The hardness, tensile and impact tests were also performed to determine the weld quality Based on experiment design, preheat, consumable, cooling condition, preheat-cooling and preheat-consumable interactions were significant factors. Preheat is the most efective factor and in the case of E7018, preheat and cooling conditions were the most sensible factors. It was found that butering was the most appropriate welding method for ferritic ductile cast iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Fatahala, S. Bahi, Mater. Sci. 31 (1996) 5765–5772.

    Article  Google Scholar 

  2. E. M. El-Banna, M. S. Nageda, M. M. Abo El-Saadat, Mater. Lett. 42 (2000) 311–320.

    Article  Google Scholar 

  3. E. M. El-Banna, Mater. Let. 41 (1999) 20–26.

    Article  Google Scholar 

  4. M. Pascual, J. Cembrero, F. Salas, M. P. Martínez, Mater Lett. 62 (2008) 1359–1362.

    Article  Google Scholar 

  5. A. R. I. Kheder, G. S. Marahleh, Pure App. Sci. 3 (2007) 49–67.

    Google Scholar 

  6. M. J. Anderson, P. J. Whitcomb, DOE Simplified: Practical Tools for Efective Experimentation, Productivity Inc., New York, 2000.

    Google Scholar 

  7. Software Helps Design-Expert Software, Version 7.1, User’s Guide, Technical Manual, Stat-Ease Inc., Minneapolis, MN, 2007.

  8. J. Antony, Design of Experiment for Engineers and Scientists, Elsevier Science and Technology Books, 2003.

    Google Scholar 

  9. D. C. Montgomery, Design and Analysis of Experiments, fifth ed., John Wiley and Sons, New York, 2000.

    Google Scholar 

  10. A. Dean, D. Voss, Design and Analysis of Experiments, Springer Text in Statics, 1999.

    Book  Google Scholar 

  11. NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, March, 2008.

  12. R. Gotipati, S. Mishra, Chem. Eng. J. 160 (2010) 99–107.

    Article  Google Scholar 

  13. Y. Song, D. Kim, Y. Park, Korean J. Chem. Eng. 99 (2011) 156–163.

    Article  Google Scholar 

  14. Metals Handbook Welding, Brazing and Soldering ASM, Vol. 6, 9th ed., Metals Park, Ohio, 1989.

  15. T. Alizadeh, Chin. J. Poly. Sci. 29 (2011) 658–669.

    Article  Google Scholar 

  16. S. Costa, M. Barroso, A. Castañera, M. Dias, Anal. Bioanal Chem. 396 (2010) 2533–2542.

    Article  Google Scholar 

  17. Howard B Cary, Scot Helzer, Modern Welding Technology, Upper Saddle River, Pearson Education, New Jersey, 2005.

    Google Scholar 

  18. S. Kehoe, M. Ardhaoui, J. Stokes, J. Mater. Eng. Perform 20 (2011) 1423–1437.

    Article  Google Scholar 

  19. ASTM A 327-91R97, Standard Test Methods for Impact Testing of Cast Irons, ASTM International, United States, 1997.

  20. S. Kou, Welding Metalurgy, 2nd Ed., John Wiley and Sons, New York, 2003.

    Google Scholar 

  21. Metals Handbook, Heat Treating ASM, 9th ed., Vol. 4, Metals Park, Ohio, 1989, p. 1487.

  22. K. M. Pedersen, N. S. Tiedje, Mater. Charact. 59 (2008) 1111–1121.

    Article  Google Scholar 

  23. R. D. Forrest, Welding Ductile Iron Casting, Casting Engineering and Foundry World, 1983.

    Google Scholar 

  24. M. Pascual, J. Cembrero, F. Salas, M. P. Martínez, Mater. Lett. 62 (2008) 1359–1362.

    Article  Google Scholar 

  25. R. C. Voight, C. R. Loper Jr., Weld. J. 62 (1983) 82s–88s.

    Google Scholar 

  26. G. R. Pease, Weld. J. 39 (1960) 1–9.

    Google Scholar 

  27. H. Cetinel, Int. J. Mater. Res. 198 (2007) 128–136.

    Article  Google Scholar 

  28. H. Cetinel, B. Uyulgan, T. Aksoy, Mater. Sci. Eng. A 387 (2004) 357–360.

    Article  Google Scholar 

  29. D. J. Kotecki, N. R. Braton, C. R. Loper, Weld. J. 48 (1969) 161s–166s.

    Google Scholar 

  30. Weman Klas, Welding Processes Handbook, CRC Press LLC, New York, 2003.

    Google Scholar 

  31. D. R. Askeland, N. Birer, Weld. J. 2 (1979) 337s.

    Google Scholar 

  32. V. Di Cocco, F. Iacovielo, M. Cavalini, Eng. Fract. Mech. 77 (2010) 2016–2023.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Askari-Paykani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Askari-Paykani, M., Shayan, M. & Shamanian, M. Weldability of Ferritic Ductile Cast Iron Using Full Factorial Design of Experiment. J. Iron Steel Res. Int. 21, 252–263 (2014). https://doi.org/10.1016/S1006-706X(14)60039-X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(14)60039-X

Key words

Navigation