Skip to main content
Log in

Statistical optimization of Rhodamine B removal by factorial design using reaction rate constant in electrochemical reaction

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This study elucidates the reduction of Rhodamine B (RhB) color through electrochemical oxidation technique. Effects of current density, electrolyte type, electrolyte concentration, air flow rate and pH on the RhB color removal were investigated. The 24 full factorial design was used to investigate the individual and combined effects of the current density, NaCl concentration, air flow rate, and pH. Also, this study tested the reaction constant rate (k) regression models as an alternative response surface model for the optimization of operating conditions. Increase of pH decreased the RhB color removal efficiency. At the same time, the increase of current density, NaCl concentration, air flow rate also increased the RhB color removal efficiency. From the 24 factorial design, it was found that the individual main effects and four interaction effects (combined effects) of the independent variables were statistically significant (p<0.05). Also, the prediction results of the RhB concentration using the k regression models showed a nonlinear pattern which was similar to the actual experimental results. In the RhB color removal reactions, the 1st order k regression model showed a smaller prediction error than the 2nd order k regression model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Robert, H. M. Chiu, Sh. Ch. Shiau, R.Y. L. Yeh and Y. T. Hung, Dyes Pigm., 73, 1 (2007).

    Article  Google Scholar 

  2. K. Rajeshwar and J.G. Ibanez, Environmental Electrochemistry. Fundamentals and application in pollution abatement, San Diego, CA, Academic Press (1997).

    Google Scholar 

  3. L. Szpyrkowicz, C. Juzzolino, S.N. Kaul, S. Daniele and M. D. De Faveri, Ind. Eng. Chem. Res., 39, 3241 (2000).

    Article  CAS  Google Scholar 

  4. M. A. Sanroman, M. Pazos, M. T. Ricart and C. Cameselle, Chemosphere, 57, 233 (2004).

    Article  CAS  Google Scholar 

  5. M. C. Rivera, M.M.D. Jimenez and M. P. E. Gonzalez, Chemosphere, 55, 1 (2004).

    Article  Google Scholar 

  6. X. Chen, G. Chen and P. L. Yue, Chem. Eng. Sci., 58, 995 (2003).

    Article  CAS  Google Scholar 

  7. A. Fernandes, A. Morao, M. Magrinho and I. Goncalves, Dyes Pigm., 61, 287 (2004).

    Article  CAS  Google Scholar 

  8. S. H. Lin, C. F. Feng, Water Res., 28(2), 277 (1994).

    Article  CAS  Google Scholar 

  9. U.B. Osutveren and S. Koparal, J. Environ. Sci. Health Environ. Sci. Eng., A29(1), 1 (1994).

    Article  Google Scholar 

  10. K. Ravikumar, S. Ramalingam, S. Krishman and K. Balu, Dyes Pigm., 70, 18 (2006).

    Article  CAS  Google Scholar 

  11. D.C. Montgomery, Design and analysis of experiments, 6th Ed., Wiley, New York, 405 (1991).

    Google Scholar 

  12. R. Krishna Prasad and S. N. Srivastava, Chem. Eng. J., 146, 22 (2009).

    Article  Google Scholar 

  13. H. S. Fogler, Elements of chemical reaction engineering. Prentice-Hall, Englewood Cliffs, New Jersey, 179 (1986).

    Google Scholar 

  14. D. S. Kim and Y. S. Park, J. Environ. Sci., 18(11), 1235 (2009).

    Article  Google Scholar 

  15. X.Y. Li, Y.H. Cui, Y. J. Feng, Z.M. Xie and J.D. Gu, Water Res., 39, 1972 (2005).

    Article  CAS  Google Scholar 

  16. M. Li, C. Feng, W. Hu, Z. Zhang and N. Sugiura, J. Hazard Mater., 162, 455 (2009).

    Article  CAS  Google Scholar 

  17. W. S. Cheng and J. S. Liang, J. Hazard Mater., 161, 1017 (2009).

    Article  Google Scholar 

  18. M. Sudoh, H. Kitaguchi and K. Koide, J. Chem. Eng. Jpn., 18, 409 (1985).

    Article  CAS  Google Scholar 

  19. K.V. Radha, V. Sridevi and K. Kalaivani, Bioresour. Technol., 100, 987 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngseek Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Y., Kim, D. & Park, Y. Statistical optimization of Rhodamine B removal by factorial design using reaction rate constant in electrochemical reaction. Korean J. Chem. Eng. 28, 156–163 (2011). https://doi.org/10.1007/s11814-010-0361-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0361-x

Key words

Navigation