Skip to main content
Log in

Obtaining multi-axial elastic potentials for rubber-like materials via an explicit, exact approach based on spline interpolation

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

An explicit, exact approach is proposed to obtain multi-axial elastic potentials for isotropic rubber-like materials undergoing large incompressible deformations. By means of two direct, explicit procedures, this approach reduces the problem of determining multi-axial potentials to that of determining one-dimensional elastic potentials. To this end, two one-dimensional potentials for uniaxial case and simple shear case are respectively determined via spline interpolation and, then, the two potentials are extended to generate a multi-axial elastic potential using a novel method based on certain logarithmic invariants. Eventually, each of the multi-axial potentials will exactly match the finite strain data from four benchmark tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Treloar, L.R.G., The Physics of Rubber Elasticity. Oxford University Press, USA, 1975.

    MATH  Google Scholar 

  2. Boyce, M.C. and Arruda, E.M., Constitutive models of rubber elasticity: a review. Rubber Chemistry and Technology, 2000, 73(3): 504–523.

    Article  Google Scholar 

  3. Diani, J. and Gilormini, P., Combining the logarithmic strain and the full-network model for a better understanding of the hyperelastic behavior of rubber-like materials. Journal of the Mechanics and Physics of Solids, 2005, 53(11): 2579–2596.

    Article  Google Scholar 

  4. Drozdov, A.D. and Gottlieb, M., Ogden-type constitutive equations in finite elasticity of elastomers. Acta Mechanica, 2006, 183(3–4): 231–252.

    Article  Google Scholar 

  5. Miehe, C., Göktepe, S. and Lulei, F., A micro-macro approach to rubber-like materials—part I: the non-affine micro-sphere model of rubber elasticity. Journal of the Mechanics and Physics of Solids, 2004, 52(1): 2617–2660.

    Article  MathSciNet  Google Scholar 

  6. Green, A.E. and Zerna, W., Theoretical Elasticity. Courier Dover Publications, 1968.

  7. Beatty, M.F., Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues—with examples. Applied Mechanics Reviews, 1987, 40: 1699–1733.

    Article  Google Scholar 

  8. Vanden Bogert, P.A.J. and De Borst, R., On the behaviour of rubberlike materials in compression and shear. Archive of Applied Mechanics, 1994, 64(2): 136–146.

    Article  Google Scholar 

  9. Charlton, D.J., Yang, J. and Teh, K.K., A review of methods to characterize rubber elastic behavior for use in finite element analysis. Rubber Chemistry and Technology, 1994, 67(3): 481–503.

    Article  Google Scholar 

  10. Criscione, J.C., Humphrey, J.D. and Douglas, A.S., et al. An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity. Journal of the Mechanics and Physics of Solids, 2000, 48(12): 2445–2465.

    Article  Google Scholar 

  11. Drozdov, A.D., Constitutive equations in finite elasticity of rubbers. International Journal of Solids and Structures, 2007, 44(1): 272–297.

    Article  MathSciNet  Google Scholar 

  12. Fu, Y.B. and Ogden, R.W., Nonlinear Elasticity: Theory and Applications. Cambridge University Press, 2001.

  13. Horgan, C.O. and Saccomandi, G., Phenomenological hyperelastic strain-stiffening constitutive models for rubber. Rubber Chemistry and Technology, 2006, 79(1): 152–169.

    Article  Google Scholar 

  14. Miehe, C., Aspects of the formulation and finite element implementation of large strain isotropic elasticity. International Journal for Numerical Methods in Engineering, 1994, 37(12): 1981–2004.

    Article  MathSciNet  Google Scholar 

  15. Muhr, A.H., Modeling the stress-strain behavior of rubber. Rubber Chemistry and Technology, 2005, 78(3): 391–425.

    Article  Google Scholar 

  16. Ogden, R.W., Non-linear Elastic Deformations. Ellis Horwood, Chichester, UK, 1984.

    MATH  Google Scholar 

  17. Vahapoglu, V. and Karadeniz, S., Constitutive equations for isotropic rubber-like materials using phenomenological approach: A bibliography (1930–2003). Rubber Chemistry and Technology, 2006, 79(3): 489–499.

    Article  Google Scholar 

  18. Koprowski-Theiß, N., Johlitz, M. and Diebels, S., Compressible rubber materials: experiments and simulations. Archive of Applied Mechanics, 2012, 82(8): 1117–1132.

    Article  Google Scholar 

  19. Steinmann, P., Hossain, M. and Possart, G., Hyperelastic models for rubber-like materials: consistent tangent operators and suitability for Treloar’s data. Archive of Applied Mechanics, 2012, 82(9): 1183–1217.

    Article  Google Scholar 

  20. Gendy, A.S. and Saleeb, A.F., Nonlinear material parameter estimation for characterizing hyper elastic large strain models. Computational Mechanics, 2000, 25(1): 66–77.

    Article  Google Scholar 

  21. Hartmann, S., Parameter estimation of hyperelasticity relations of generalized polynomial-type with constraint conditions. International Journal of Solids and Structures, 2001, 38(44): 7999–8018.

    Article  Google Scholar 

  22. Ogden, R.W., Saccomandi, G. and Sgura, I., Fitting hyperelastic models to experimental data. Computational Mechanics, 2004, 34(6): 484–502.

    Article  Google Scholar 

  23. Twizell, E.H., Non-linear optimization of the material constants in Ogden’s stress-deformation function for incompressible isotropic elastic materials. Journal of the Australian Mathematical Society Series B, 1983, 24(424–434): C646.

    Google Scholar 

  24. Xiao, H., An explicit, direct approach to obtaining multiaxial elastic potentials that exactly match data of four benchmark tests for rubbery materials—part 1: incompressible deformations. Acta Mechanica, 2012, 223(9): 2039–2063.

    Article  MathSciNet  Google Scholar 

  25. Hencky, H., Uber die form des elastizitätsgesetzes bei ideal elastischen stoffen. Z. Techn. Phys, 1928, 9: 215–220.

    MATH  Google Scholar 

  26. Hencky, H., The Law of elasticity for isotropic and quasi-isotropic substances by finite deformations. Journal of Rheology, 1931, 2: 169–176.

    Article  Google Scholar 

  27. Hencky, H., The elastic behavior of vulcanized rubber. Rubber Chemistry and Technology, 1933, 6(2): 217–224.

    Article  Google Scholar 

  28. Hill, R., On constitutive inequalities for simple materials—I. Journal of the Mechanics and Physics of Solids, 1968, 16(4): 229–242.

    Article  Google Scholar 

  29. Hill, R., Constitutive inequalities for isotropic elastic solids under finite strain. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1970, 314(1519): 457–472.

    Article  Google Scholar 

  30. Hill, R., Aspects of invariance in solid mechanics. Advances in Applied Mechanics, 1978, 18: 1–75.

    MathSciNet  MATH  Google Scholar 

  31. Xiao, H., Hencky strain and Hencky model: extending history and ongoing tradition. Multidiscipline Modeling in Materials and Structures, 2005, 1(1): 1–52.

    Article  MathSciNet  Google Scholar 

  32. Xiao, H., Bruhns, O.T. and Meyers, A., Elastoplasticity beyond small deformations. Acta Mechanica, 2006, 182(1–2): 31–111.

    Article  Google Scholar 

  33. Anand, L. and On, H. Hencky’s approximate strain-energy function for moderate deformations. Journal of Applied Mechanics, 1979, 46: 78–82.

    Article  Google Scholar 

  34. Anand, L., Moderate deformations in extension-torsion of incompressible isotropic elastic materials. Journal of the Mechanics and Physics of Solids, 1986, 34(3): 293–304.

    Article  Google Scholar 

  35. Anand, L., Moderate deformations in extension-torsion of incompressible isotropic elastic materials. Journal of the Mechanics and Physics of Solids, 1986, 34(3): 293–304.

    Article  Google Scholar 

  36. Criscione, J.C., Direct tensor expression for natural strain and fast, accurate approximation. Computers & Structures, 2002, 80(25): 1895–1905.

    Article  MathSciNet  Google Scholar 

  37. Eterovic, A.L. and Bathe, K.J., A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using the logarithmic stress and strain measures. International Journal for Numerical Methods in Engineering, 1990, 30(6): 1099–1114.

    Article  Google Scholar 

  38. Fitzgerald, J.E., A tensorial Hencky measure of strain and strain rate for finite deformations. Journal of Applied Physics, 1980, 51(10): 5111–5115.

    Article  Google Scholar 

  39. Horgan, C.O. and Murphy, J.G., A generalization of Hencky’s strain-energy density to model the large deformations of slightly compressible solid rubbers. Mechanics of Materials, 2009, 41(8): 943–950.

    Article  Google Scholar 

  40. Kakavas, P.A., A new development of the strain energy function for hyperelastic materials using a logarithmic strain approach. Journal of Applied Polymer Science, 2000, 77(3): 660–672.

    Article  Google Scholar 

  41. Miehe, C., Apel, N. and Lambrecht, M., Anisotropic additive plasticity in the logarithmic strain space: modular kinematic formulation and implementation based on incremental minimization principles for standard materials. Computer Methods in Applied Mechanics and Engineering, 2002, 191(47): 5383–5425.

    Article  MathSciNet  Google Scholar 

  42. Perić, D., Owen, D.R.J. and Honnor, M.E., A model for finite strain elasto-plasticity based on logarithmic strains: Computational issues. Computer Methods in Applied Mechanics and Engineering, 1992, 94(1): 35–61.

    Article  Google Scholar 

  43. Xiao, H., Bruhns, O.T. and Meyers, A., Basic issues concerning finite strain measures and isotropic stress-deformation relations. Journal of Elasticity and the Physical Science of Solids, 2002, 67(1): 1–23.

    Article  MathSciNet  Google Scholar 

  44. Xiao, H., Bruhns, O.T. and Meyers, A., Explicit dual stress-strain and strain-stress relations of incompressible isotropic hyperelastic solids via deviatoric Hencky strain and Cauchy stress. Acta Mechanica, 2004, 168(1–2): 21–33.

    Article  Google Scholar 

  45. Xiao, H. and Chen, L.S., Hencky’s logarithmic strain and dual stress-strain and strain-stress relations in isotropic finite hyperelasticity. International Journal of Solids and Structures, 2003, 40(6): 1455–1463.

    Article  Google Scholar 

  46. Haupt, P., Continuum Mechanics and Theory of Materials. Springer, 2002.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Xiao.

Additional information

Project supported by the fund for innovative research from Shanghai University (No. A10-0401-12-001) and the start-up fund from the 211-project of the Education Committee of China through Shanghai University (No. A15-B002-09-032).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhang, Y., Wang, X. et al. Obtaining multi-axial elastic potentials for rubber-like materials via an explicit, exact approach based on spline interpolation. Acta Mech. Solida Sin. 27, 441–453 (2014). https://doi.org/10.1016/S0894-9166(14)60052-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0894-9166(14)60052-5

Key Words

Navigation