Moreira M, Sarraguça M. How can oral paediatric formulations be improved? A challenge for the XXI century. Int J Pharm. 2020. https://doi.org/10.1016/J.IJPHARM.2020.119905.
Article
PubMed
Google Scholar
Klingmann V, Spomer N, Lerch C. Favorable acceptance of mini-tablets compared with syrup: a randomized controlled trial in infants and preschool children. J Pediatr. 2013. https://doi.org/10.1016/J.JPEDS.2013.07.014.
Article
PubMed
Google Scholar
Breitkreutz J, Boos J. Paediatric and geriatric drug delivery. Expert Opin Drug Deliv. 2007;4:37–45. https://doi.org/10.1517/17425247.4.1.37.
CAS
Article
PubMed
Google Scholar
Liu F, Ranmal S, Batchelor HK. Patient-centered pharmaceutical design to improve acceptability of medicines: similarities and differences in paediatric and geriatric populations. Drugs. 2014;74:1871–89. https://doi.org/10.1007/S40265-014-0297-2.
CAS
Article
PubMed
PubMed Central
Google Scholar
el Aita I, Ponsar H, Quodbach J. A critical review on 3D-printed dosage forms. Curr Pharm Des. 2018;24:4957–78. https://doi.org/10.2174/1381612825666181206124206.
CAS
Article
PubMed
Google Scholar
el Aita I, Breitkreutz J, Quodbach J. Investigation of semi-solid formulations for 3D printing of drugs after prolonged storage to mimic real-life applications. Eur J Pharm Sci. 2020;146: 105266. https://doi.org/10.1016/J.EJPS.2020.105266.
Article
PubMed
Google Scholar
Melocchi A, Uboldi M, Cerea M. A graphical review on the escalation of fused deposition modeling (FDM) 3D printing in the pharmaceutical field. J Pharm Sci. 2020;109:2943–57. https://doi.org/10.1016/J.XPHS.2020.07.011.
CAS
Article
PubMed
Google Scholar
Shaqour B, Samaro A, Verleije B. Production of drug delivery systems using fused filament fabrication: a systematic review. Pharmaceutics. 2020;12:517. https://doi.org/10.3390/PHARMACEUTICS12060517.
CAS
Article
PubMed Central
Google Scholar
PolyPrint | ProMatLeben—Polymere n.d. https://promatleben.de/de/projekte/projekte-alphabetisch/polyprint/. Accessed 2 Sep 2021.
Paediatric formulations | European Medicines Agency n.d. https://www.ema.europa.eu/en/human-regulatory/research-development/paediatric-medicines/paediatric-investigation-plans/paediatric-formulations. Accessed 2 Sep 2021.
Reflection paper: formulations choice paediatric population n.d. https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-formulations-choice-paediatric-population_en.pdf. Accessed 2 Sep 2021.
Thabet Y, Klingmann V, Breitkreutz J. Drug formulations: standards and novel strategies for drug administration in pediatrics. J Clin Pharmacol. 2018;58:S26-35. https://doi.org/10.1002/JCPH.1138.
CAS
Article
PubMed
Google Scholar
Rouaz K, Chiclana-Rodríguez B, Nardi-Ricart A. Excipients in the paediatric population: a review. Pharmaceutics. 2021. https://doi.org/10.3390/PHARMACEUTICS13030387.
Article
PubMed
PubMed Central
Google Scholar
Walsh J, Cram A, Woertz K. Playing hide and seek with poorly tasting paediatric medicines: do not forget the excipients. Adv Drug Deliv Rev. 2014;73:14–33. https://doi.org/10.1016/J.ADDR.2014.02.012.
CAS
Article
PubMed
Google Scholar
STEP Database—EuPFI n.d. http://www.eupfi.org/step-database-info/. Accessed 2 Sep 2021.
Yochana S, Yu M, Alvi M. Pharmaceutical excipients and pediatric formulations. Chim Oggi. 2012;30:56–61.
CAS
Google Scholar
Simões MF, Pinto RMA, Simões S. Hot-melt extrusion in the pharmaceutical industry: toward filing a new drug application. Drug Discov Today. 2019;24:1749–68. https://doi.org/10.1016/J.DRUDIS.2019.05.013.
Article
PubMed
Google Scholar
Simões MF, Pinto RMA, Simões S. Hot-melt extrusion: a roadmap for product development. AAPS PharmSciTech. 2021. https://doi.org/10.1208/S12249-021-02017-7.
Article
PubMed
Google Scholar
Bandari S, Nyavanandi D, Dumpa N. Coupling hot melt extrusion and fused deposition modeling: critical properties for successful performance. Adv Drug Deliv Rev. 2021;172:52–63. https://doi.org/10.1016/J.ADDR.2021.02.006.
CAS
Article
PubMed
Google Scholar
Melocchi A, Parietti F, Maroni A. Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling. Int J Pharm. 2016;509:255–63. https://doi.org/10.1016/j.ijpharm.2016.05.036.
CAS
Article
PubMed
Google Scholar
Korte C, Quodbach J. Formulation development and process analysis of drug-loaded filaments manufactured via hot-melt extrusion for 3D-printing of medicines. Pharm Dev Technol. 2018;23:1117–27. https://doi.org/10.1080/10837450.2018.1433208.
CAS
Article
PubMed
Google Scholar
Zhang J, Feng X, Patil H. Coupling 3D printing with hot-melt extrusion to produce controlled-release tablets. Int J Pharm. 2017;519:186–97. https://doi.org/10.1016/j.ijpharm.2016.12.049.
CAS
Article
PubMed
Google Scholar
Fuenmayor E, Forde M, Healy AV. Material considerations for fused-filament fabrication of solid dosage forms. Pharmaceutics. 2018;10:44. https://doi.org/10.3390/PHARMACEUTICS10020044.
Article
PubMed Central
Google Scholar
Nasereddin JM, Wellner N, Alhijjaj M. Development of a simple mechanical screening method for predicting the feedability of a pharmaceutical FDM 3D printing filament. Pharm Res. 2018;35:1–13. https://doi.org/10.1007/S11095-018-2432-3.
CAS
Article
Google Scholar
Zhang J, Xu P, Vo A. Development and evaluation of pharmaceutical 3D printability for hot melt extruded cellulose-based filaments. J Drug Deliv Sci Technol. 2019;52:292. https://doi.org/10.1016/J.JDDST.2019.04.043.
CAS
Article
PubMed
PubMed Central
Google Scholar
Azad MA, Olawuni D, Kimbell G. Polymers for extrusion-based 3D printing of pharmaceuticals: a holistic materials-process perspective. Pharmaceutics. 2020;12:124. https://doi.org/10.3390/PHARMACEUTICS12020124.
CAS
Article
PubMed Central
Google Scholar
Thakkar R, Thakkar R, Pillai A. Systematic screening of pharmaceutical polymers for hot melt extrusion processing: a comprehensive review. Int J Pharm. 2020;576: 118989. https://doi.org/10.1016/J.IJPHARM.2019.118989.
CAS
Article
PubMed
Google Scholar
Gottschalk N, Bogdahn M, Harms M. Brittle polymers in fused deposition modeling: an improved feeding approach to enable the printing of highly drug loaded filament. Int J Pharm. 2021;597: 120216. https://doi.org/10.1016/J.IJPHARM.2021.120216.
CAS
Article
PubMed
Google Scholar
Ehtezazi T, Algellay M, Islam Y. The application of 3D printing in the formulation of multilayered fast dissolving oral films. J Pharm Sci. 2018;107:1076–85. https://doi.org/10.1016/J.XPHS.2017.11.019.
CAS
Article
PubMed
Google Scholar
Boniatti J, Januskaite P, da Fonseca LB. Direct powder extrusion 3D printing of praziquantel to overcome neglected disease formulation challenges in paediatric populations. Pharmaceutics. 2021. https://doi.org/10.3390/PHARMACEUTICS13081114.
Article
PubMed
PubMed Central
Google Scholar
Wang H, Dumpa N, Bandari S. Fabrication of taste-masked donut-shaped tablets via fused filament fabrication 3D printing paired with hot-melt extrusion techniques. AAPS PharmSciTech. 2020. https://doi.org/10.1208/S12249-020-01783-0.
Article
PubMed
Google Scholar
Woertz K, Tissen C, Kleinebudde P. Taste sensing systems (electronic tongues) for pharmaceutical applications. Int J Pharm. 2011;417:256–71. https://doi.org/10.1016/J.IJPHARM.2010.11.028.
CAS
Article
PubMed
Google Scholar
Soto J, Keeley A, Keating AV. Rats can predict aversiveness of active pharmaceutical ingredients. Eur J Pharm Biopharm. 2018;133:77–84. https://doi.org/10.1016/J.EJPB.2018.09.027.
CAS
Article
PubMed
Google Scholar
Patwardhan K, Asgarzadeh F, Dassinger T. A quality by design approach to understand formulation and process variability in pharmaceutical melt extrusion processes. J Pharm Pharmacol. 2015;67:673–84. https://doi.org/10.1111/JPHP.12370.
CAS
Article
PubMed
Google Scholar
Islam MT, Maniruzzaman M, Halsey SA. Development of sustained-release formulations processed by hot-melt extrusion by using a quality-by-design approach. Drug Deliv Transl Res. 2014;4:377–87. https://doi.org/10.1007/S13346-014-0197-8.
CAS
Article
PubMed
Google Scholar
Agrawal A, Dudhedia M, Deng W. Development of tablet formulation of amorphous solid dispersions prepared by hot melt extrusion using quality by design approach. AAPS PharmSciTech. 2016;17:214–32. https://doi.org/10.1208/S12249-015-0472-0.
CAS
Article
PubMed
PubMed Central
Google Scholar
Ponsar H, Wiedey R, Quodbach J. Hot-melt extrusion process fluctuations and their impact on critical quality attributes of filaments and 3D-printed dosage forms. Pharmaceutics. 2020;12:511. https://doi.org/10.3390/pharmaceutics12060511.
CAS
Article
PubMed Central
Google Scholar
Kohlgrüber K. Co-rotating twin-screw extruders: fundamentals | Hanser-Fachbuch. Munich: Hanser; 2008.
Google Scholar
Coperion Download Center n.d. https://download.coperion.com/index_.html?download=111413. Accessed 2 Sep 2021.
Hopkins M. LOSS in weight feeder systems. Meas Control. 2006;39:237–40. https://doi.org/10.1177/002029400603900801.
Article
Google Scholar
Schulze D. Powders and bulk solids—behavior, characterization, storage and flow|Dietmar Schulze|, vol. 22. New York: Springer; 2008.
Google Scholar
Fahlenbock TD. Selecting a screw feed device for low-rate loss-in-weight feeding. Powder Bulk Eng. 2007;21(12):27–31.
Google Scholar
Matarazzo P. Checklist for selecting a volumetric or gravimetric feeder. Powder Bulk Eng. 2010.
NAMUR. Dosiergenauigkeit von kontinuierlichen Waagen. 2006.
Meier R, Thommes M, Rasenack N. Granule size distributions after twin-screw granulation—do not forget the feeding systems. Eur J Pharm Biopharm. 2016;106:59–69. https://doi.org/10.1016/J.EJPB.2016.05.011.
CAS
Article
PubMed
Google Scholar
Engisch WE, Muzzio FJ. Method for characterization of loss-in-weight feeder equipment. Powder Technol. 2012;228:395–403. https://doi.org/10.1016/J.POWTEC.2012.05.058.
CAS
Article
Google Scholar
Bruce C, Manning M. Melt extruded thin strips containing coated pharmaceutical actives, 2011.
Merck KGAA. Shaping the future of formulation development with melt-based 3d printing technologies [White Paper]. 2021. https://www.pharmaexcipients.com/wp-content/uploads/2021/06/Shaping-the-Future-of-Formulation-Development-with-Melt-based-3D-Printing-Technologies.pdf. Accessed Sept 21, 2021.
Vynckier A-K, Dierickx L, Voorspoels J. Hot-melt co-extrusion: requirements, challenges and opportunities for pharmaceutical applications. J Pharm Pharmacol. 2014;66:167–79. https://doi.org/10.1111/JPHP.12091.
CAS
Article
PubMed
Google Scholar
Crowley MM, Zhang F, Repka MA. Pharmaceutical applications of hot-melt extrusion: part I. Drug Dev Ind Pharm. 2008;33:909–26. https://doi.org/10.1080/03639040701498759.
CAS
Article
Google Scholar
Liang JZ. Effects of extrusion conditions on die-swell behavior of polypropylene/diatomite composite melts. Polym Test. 2008;27:936–40. https://doi.org/10.1016/J.POLYMERTESTING.2008.08.001.
CAS
Article
Google Scholar
Öblom H, Zhang J, Pimparade M. 3D-printed isoniazid tablets for the treatment and prevention of tuberculosis—personalized dosing and drug release. AAPS PharmSciTech. 2019. https://doi.org/10.1208/S12249-018-1233-7.
Article
PubMed
Google Scholar
Xie T, Taylor LS. Effect of temperature and moisture on the physical stability of binary and ternary amorphous solid dispersions of celecoxib. J Pharm Sci. 2017;106:100–10. https://doi.org/10.1016/J.XPHS.2016.06.017.
CAS
Article
PubMed
Google Scholar
Awad A, Fina F, Trenfield SJ. 3D printed pellets (miniprintlets): a novel, multi-drug, controlled release platform technology. Pharmaceutics. 2019;11:148. https://doi.org/10.3390/PHARMACEUTICS11040148.
CAS
Article
PubMed Central
Google Scholar
Eggenreich K, Windhab S, Schrank S. Injection molding as a one-step process for the direct production of pharmaceutical dosage forms from primary powders. Int J Pharm. 2016;505:341–51. https://doi.org/10.1016/J.IJPHARM.2016.03.034.
CAS
Article
PubMed
Google Scholar
Repka M, Bandari S, Kallakunta V. Melt extrusion with poorly soluble drugs—an integrated review. Int J Pharm. 2018;535:68–85. https://doi.org/10.1016/J.IJPHARM.2017.10.056.
CAS
Article
PubMed
Google Scholar
Saerens L, Vervaet C, Remon JP. Process monitoring and visualization solutions for hot-melt extrusion: a review. J Pharm Pharmacol. 2014;66:180–203. https://doi.org/10.1111/JPHP.12123.
CAS
Article
PubMed
Google Scholar
Spoerk M, Koutsamanis I, Matic J. Novel cleaning-in-place strategies for pharmaceutical hot melt extrusion. Pharmaceutics. 2020;12:1–21. https://doi.org/10.3390/PHARMACEUTICS12060588.
Article
Google Scholar
Wesholowski J, Prill S, Berghaus A. Inline UV/Vis spectroscopy as PAT tool for hot-melt extrusion. Drug Deliv Transl Res. 2018;8:1595–603. https://doi.org/10.1007/S13346-017-0465-5.
CAS
Article
PubMed
Google Scholar
Saerens L, Dierickx L, Lenain B. Raman spectroscopy for the in-line polymer–drug quantification and solid state characterization during a pharmaceutical hot-melt extrusion process. Eur J Pharm Biopharm. 2011;77:158–63. https://doi.org/10.1016/J.EJPB.2010.09.015.
CAS
Article
PubMed
Google Scholar
Vo AQ, He H, Zhang J. Application of FT-NIR analysis for in-line and real-time monitoring of pharmaceutical hot melt extrusion: a technical note. AAPS PharmSciTech. 2018;19:3425. https://doi.org/10.1208/S12249-018-1091-3.
CAS
Article
PubMed
Google Scholar
Kallakunta VR, Sarabu S, Bandari S. An update on the contribution of hot-melt extrusion technology to novel drug delivery in the twenty-first century: part I. Expert Opin Drug Deliv. 2019;16:539. https://doi.org/10.1080/17425247.2019.1609448.
CAS
Article
PubMed
PubMed Central
Google Scholar
Kim EJ, Kim JH, Kim M-S. Process analytical technology tools for monitoring pharmaceutical unit operations: a control strategy for continuous process verification. Pharmaceutics. 2021;13:919. https://doi.org/10.3390/PHARMACEUTICS13060919.
Article
PubMed
PubMed Central
Google Scholar
Koutsamanis I, Paudel A, Nickisch K. Controlled-release from high-loaded reservoir-type systems—a case study of ethylene-vinyl acetate and progesterone. Pharmaceutics. 2020. https://doi.org/10.3390/PHARMACEUTICS12020103.
Article
PubMed
PubMed Central
Google Scholar
Auch C, Harms M, Mäder K. How changes in molecular weight and PDI of a polymer in amorphous solid dispersions impact dissolution performance. Int J Pharm. 2019;556:372–82. https://doi.org/10.1016/J.IJPHARM.2018.12.012.
CAS
Article
PubMed
Google Scholar
Ting J, William W, Porter I, Mecca JM. Advances in polymer design for enhancing oral drug solubility and delivery. Bioconjug Chem. 2018;29:939–52. https://doi.org/10.1021/ACS.BIOCONJCHEM.7B00646.
CAS
Article
PubMed
Google Scholar
Đuranović M, Obeid S, Madžarevic M, et al. Paracetamol extended release FDM 3D printlets: evaluation of formulation variables on printability and drug release. Int J Pharm. 2021. https://doi.org/10.1016/J.IJPHARM.2020.120053.
Article
PubMed
Google Scholar
Gorkem Buyukgoz G, Soffer D, Defendre J. Exploring tablet design options for tailoring drug release and dose via fused deposition modeling (FDM) 3D printing. Int J Pharm. 2020. https://doi.org/10.1016/J.IJPHARM.2020.119987.
Article
PubMed
Google Scholar
Prasad E, Islam MT, Goodwin DJ. Development of a hot-melt extrusion (HME) process to produce drug loaded AffinisolTM 15LV filaments for fused filament fabrication (FFF) 3D printing. Addit Manuf. 2019. https://doi.org/10.1016/J.ADDMA.2019.06.027.
Article
Google Scholar
Aho J, van Renterghem J, Arnfast L. The flow properties and presence of crystals in drug-polymer mixtures: rheological investigation combined with light microscopy. Int J Pharm. 2017;528:383–94. https://doi.org/10.1016/J.IJPHARM.2017.06.012.
CAS
Article
PubMed
Google Scholar
Qian F, Huang J, Hussain M. Drug-polymer solubility and miscibility: stability consideration and practical challenges in amorphous solid dispersion development. J Pharm Sci. 2010;99:2941–7. https://doi.org/10.1002/JPS.22074.
CAS
Article
PubMed
Google Scholar
Baird J, van Eerdenbrugh B, Taylor L. A classification system to assess the crystallization tendency of organic molecules from undercooled melts. J Pharm Sci. 2010;99:3787–806. https://doi.org/10.1002/JPS.22197.
CAS
Article
PubMed
Google Scholar
Dedroog S, Pas T, Vergauwen B. Solid-state analysis of amorphous solid dispersions: why DSC and XRPD may not be regarded as stand-alone techniques. J Pharm Biomed Anal. 2020. https://doi.org/10.1016/J.JPBA.2019.112937.
Article
PubMed
Google Scholar
Ma X, Williams RO III. Characterization of amorphous solid dispersions: an update. J Drug Deliv Sci Technol. 2019;50:113–24. https://doi.org/10.1016/j.jddst.2019.01.017.
CAS
Article
Google Scholar
Wadher K, Trivedi R, Wankhede N. 3D printing in pharmaceuticals: an emerging technology full of challenges. Ann Pharm Fr. 2021;79:107–18. https://doi.org/10.1016/J.PHARMA.2020.08.007.
CAS
Article
PubMed
Google Scholar
Hauser G. Hygienegerechte apparate und anlagen, vol. 1. 1st ed. Weinheim: Wiley; 2008.
Google Scholar
Kampker A, Triebs J, Kawollek S. Review on machine designs of material extrusion based additive manufacturing (AM) systems—status-Quo and potential analysis for future AM systems. Procedia CIRP. 2019;81:815–9. https://doi.org/10.1016/J.PROCIR.2019.03.205.
Article
Google Scholar
Melocchi A, Briatico-Vangosa F, Uboldi M. Quality considerations on the pharmaceutical applications of fused deposition modeling 3D printing. Int J Pharm. 2021. https://doi.org/10.1016/J.IJPHARM.2020.119901.
Article
PubMed
Google Scholar
Leitlinien—EHEDG n.d. https://ehedg.de/leitlinien/. Accessed 2 Sep 2021.
Fortus 450mc | StratasysTM Support Center n.d. https://support.stratasys.com/en/printers/fdm/fortus-450mc. Accessed 2 Sep 2021.
BIO X Syringe Pump Printhead—CELLINK n.d. https://www.cellink.com/product/bio-x-syringe-pump-printhead/. Accessed 2 Sep 2021.
SDS-5 3d printer Extruder| Hyrel3D n.d. https://www.hyrel3d.com/portfolio/sds-5-extruder/. Accessed 2 Sep 2021.
Serdeczny MP, Comminal R, Mollah MT. Numerical modeling of the polymer flow through the hot-end in filament-based material extrusion additive manufacturing. Addit Manuf. 2020. https://doi.org/10.1016/J.ADDMA.2020.101454.
Article
Google Scholar
x500pro | German RepRap GmbH n.d. https://www.germanreprap.com/printer/x500pro.aspx. Accessed 2 Sep 2021.
van Bracht R, Piller FT, Marquardt E. Das Potenzial der additiven Fertigung: digitale Technologien im Unternehmenskontext : Auswert 2019.
Kim H, Lin Y, Tseng TLB. A review on quality control in additive manufacturing. Rapid Prototyping J. 2018;24:645–69. https://doi.org/10.1108/RPJ-03-2017-0048.
Article
Google Scholar
Becker P, Gebert J, Roennau A et al. Online error detection in additive manufacturing: a review. In: Proceedings of the 2021 IEEE 8th International Conference on Industrial Engineering and Applications, ICIEA 2021, pp. 167–75. https://doi.org/10.1109/ICIEA52957.2021.9436729.
Tlegenov Y, Lu WF, Hong GS. A dynamic model for current-based nozzle condition monitoring in fused deposition modelling. Progress Addit Manuf. 2019;4:211–23. https://doi.org/10.1007/S40964-019-00089-3.
Article
Google Scholar
Rao P, Liu J, Mathew Roberson D, et al. Online real-time quality monitoring in additive manufacturing processes using heterogeneous sensors additive manufacturing view project fatigue life prediction from defect criticality for L-PBF parts view project online real-time quality monitoring in additive manufacturing processes using heterogeneous sensors. J Manuf Sci Eng. 2014. https://doi.org/10.1115/1.4029823.
Article
Google Scholar
Baumann F, Roller D. Vision based error detection for 3D printing processes. MATEC Web Conf. 2016;59:1–7. https://doi.org/10.1051/conf/2016.
Article
Google Scholar
Becker P, Spielbauer N, Roennau A. Real-time in-situ process error detection in additive manufacturing. In: Proceedings of the 4th IEEE International Conference on Robotic Computing, IRC 2020, 2020, pp 426–427. https://doi.org/10.1109/IRC.2020.00077.
Greeff GP, Schilling M. Closed loop control of slippage during filament transport in molten material extrusion. Addit Manuf. 2017;14:31–8. https://doi.org/10.1016/j.addma.2016.12.005.
Article
Google Scholar
Khorasani M, Edinger M, Raijada D, et al. Near-infrared chemical imaging (NIR-CI) of 3D printed pharmaceuticals. Int J Pharm. 2016;515:324–30. https://doi.org/10.1016/j.ijpharm.2016.09.075.
CAS
Article
PubMed
Google Scholar
Theil F, Milsmann J, Anantharaman S, et al. Manufacturing amorphous solid dispersions with a tailored amount of crystallized API for biopharmaceutical testing. Mol Pharm. 2018;15:1870–7. https://doi.org/10.1021/acs.molpharmaceut.8b00043.
CAS
Article
PubMed
Google Scholar
Alessandrini E, Brako F, Scarpa M. Children’s Preferences for Oral Dosage Forms and Their Involvement in Formulation Research via EPTRI (European Paediatric Translational Research Infrastructure). Pharmaceutics. 2021;13:730. https://doi.org/10.3390/PHARMACEUTICS13050730.
Article
PubMed
PubMed Central
Google Scholar
Jamróz W, Szafraniec J, Kurek M. 3D printing in pharmaceutical and medical applications—recent achievements and challenges. Pharm Res. 2018. https://doi.org/10.1007/S11095-018-2454-X.
Article
PubMed
PubMed Central
Google Scholar
Lennartz P, Mielck JB. Minitabletting: improving the compactability of paracetamol powder mixtures. Int J Pharm. 1998;173:75–85. https://doi.org/10.1016/S0378-5173(98)00206-3.
CAS
Article
Google Scholar
Klingmann V, Seitz A, Meissner T. Acceptability of uncoated mini-tablets in neonates—a randomized controlled trial. J Pediatr. 2015;167:893-896.e2. https://doi.org/10.1016/J.JPEDS.2015.07.010.
Article
PubMed
Google Scholar
Krause J, Müller L, Sarwinska D. 3D printing of mini tablets for pediatric use. Pharmaceuticals. 2021;14:1–16. https://doi.org/10.3390/PH14020143.
Article
Google Scholar
Parhi R. A review of three-dimensional printing for pharmaceutical applications: quality control, risk assessment and future perspectives. J Drug Deliv Sci Technol. 2021. https://doi.org/10.1016/J.JDDST.2021.102571.
Article
Google Scholar
Ayyoubi S, Cerda JR, Fernández-García R. 3D printed spherical mini-tablets: geometry versus composition effects in controlling dissolution from personalised solid dosage forms. Int J Pharm. 2021. https://doi.org/10.1016/J.IJPHARM.2021.120336.
Article
PubMed
Google Scholar
Fanous M, Bitar M, Gold S. Development of immediate release 3D-printed dosage forms for a poorly water-soluble drug by fused deposition modeling: study of morphology, solid state and dissolution. Int J Pharm. 2021;599: 120417. https://doi.org/10.1016/J.IJPHARM.2021.120417.
CAS
Article
PubMed
Google Scholar
Vijayavenkataraman S, Fuh JYH, Lu WF. 3D printing and 3D bioprinting in pediatrics. Bioengineering. 2017. https://doi.org/10.3390/BIOENGINEERING4030063.
Article
PubMed
PubMed Central
Google Scholar
Scoutaris N, Ross S, Douroumis D. 3D printed “Starmix” drug loaded dosage forms for paediatric applications. Pharm Res. 2018. https://doi.org/10.1007/S11095-017-2284-2.
Article
PubMed
Google Scholar
Pereira BC, Isreb A, Forbes RT. ‘Temporary Plasticiser’: a novel solution to fabricate 3D printed patient-centred cardiovascular ‘Polypill’ architectures. Eur J Pharm Biopharm. 2019;135:94–103. https://doi.org/10.1016/J.EJPB.2018.12.009.
CAS
Article
PubMed
Google Scholar
Klingmann V, Pohly CE, Meissner T. Acceptability of an orodispersible film compared to syrup in neonates and infants: a randomized controlled trial. Eur J Pharm Biopharm. 2020;151:239–45. https://doi.org/10.1016/J.EJPB.2020.03.018.
CAS
Article
PubMed
Google Scholar
Orlu M, Ranmal SR, Sheng Y. Acceptability of orodispersible films for delivery of medicines to infants and preschool children. Drug Deliv. 2017;24:1243–8. https://doi.org/10.1080/10717544.2017.1370512.
CAS
Article
PubMed
PubMed Central
Google Scholar
Musazzi UM, Selmin F, Ortenzi MA. Personalized orodispersible films by hot melt ram extrusion 3D printing. Int J Pharm. 2018;551:52–9. https://doi.org/10.1016/J.IJPHARM.2018.09.013.
CAS
Article
PubMed
Google Scholar
Liu C, Chang D, Zhang X. Oral fast-dissolving films containing lutein nanocrystals for improved bioavailability: formulation development, in vitro and in vivo evaluation. AAPS PharmSciTech. 2017;18:2957–64. https://doi.org/10.1208/S12249-017-0777-2.
CAS
Article
PubMed
Google Scholar
Foo WC, Khong YM, Gokhale R. A novel unit-dose approach for the pharmaceutical compounding of an orodispersible film. Int J Pharm. 2018;539:165–74. https://doi.org/10.1016/J.IJPHARM.2018.01.047.
CAS
Article
PubMed
Google Scholar
Huanbutta K, Sriamornsak P, Singh I. Manufacture of 2D-printed precision drug-loaded orodispersible film prepared from tamarind seed gum substrate. Appl Sci. 2021;11:5852. https://doi.org/10.3390/APP11135852.
CAS
Article
Google Scholar
Öblom H, Sjöholm E, Rautamo M. towards printed pediatric medicines in hospital pharmacies: comparison of 2D and 3D-printed orodispersible warfarin films with conventional oral powders in unit dose sachets. Pharmaceutics. 2019. https://doi.org/10.3390/PHARMACEUTICS11070334.
Article
PubMed
PubMed Central
Google Scholar
Landová H, Vetchý D. Evaluation of the influence of formulation and process variables on mechanical properties of oral mucoadhesive films using multivariate data analysis. BioMed Res Int. 2014. https://doi.org/10.1155/2014/179568.
Article
PubMed
PubMed Central
Google Scholar
Evans SE, Harrington T, Rodriguez Rivero MC, et al. 2D and 3D inkjet printing of biopharmaceuticals—a review of trends and future perspectives in research and manufacturing. Int J Pharm. 2021;599: 120443. https://doi.org/10.1016/J.IJPHARM.2021.120443.
CAS
Article
PubMed
Google Scholar
Jamróz W, Kurek M, Łyszczarz E, et al. 3D printed orodispersible films with Aripiprazole. Int J Pharm. 2017;533:413–20. https://doi.org/10.1016/J.IJPHARM.2017.05.052.
Article
PubMed
Google Scholar
Cho HW, Baek SH, Lee BJ, et al. Orodispersible polymer films with the poorly water-soluble drug, olanzapine: hot-melt pneumatic extrusion for single-process 3D printing. Pharmaceutics. 2020;12:1–16. https://doi.org/10.3390/PHARMACEUTICS12080692.
Article
Google Scholar
Eleftheriadis GK, Ritzoulis C, Bouropoulos N, et al. Unidirectional drug release from 3D printed mucoadhesive buccal films using FDM technology: In vitro and ex vivo evaluation. Eur J Pharm Biopharm. 2019;144:180–92. https://doi.org/10.1016/J.EJPB.2019.09.018.
CAS
Article
PubMed
Google Scholar
Than YM, Titapiwatanakun V. Tailoring immediate release FDM 3D printed tablets using a quality by design (QbD) approach. Int J Pharm. 2021;599: 120402. https://doi.org/10.1016/J.IJPHARM.2021.120402.
CAS
Article
PubMed
Google Scholar
Nukala PK, Palekar S, Patki M, et al. Abuse deterrent immediate release egg-shaped tablet (Egglets) using 3D printing technology: quality by design to optimize drug release and extraction. AAPS PharmSciTech. 2019. https://doi.org/10.1208/S12249-019-1298-Y.
Article
PubMed
Google Scholar
Zhang J, Thakkar R, Zhang Y. Structure-function correlation and personalized 3D printed tablets using a quality by design (QbD) approach. Int J Pharm. 2020. https://doi.org/10.1016/J.IJPHARM.2020.119945.
Article
PubMed
Google Scholar
Palekar S, Nukala P, Mishra S. Application of 3D printing technology and quality by design approach for development of age-appropriate pediatric formulation of baclofen. Int J Pharm. 2019;556:106–16. https://doi.org/10.1016/J.IJPHARM.2018.11.062.
CAS
Article
PubMed
Google Scholar
Goyanes A, Fina F, Martorana A, et al. Development of modified release 3D printed tablets (printlets) with pharmaceutical excipients using additive manufacturing. Int J Pharm. 2017;527:21–30. https://doi.org/10.1016/J.IJPHARM.2017.05.021.
CAS
Article
PubMed
Google Scholar
Markl D, Zeitler JA, Rasch C. Analysis of 3D prints by X-ray computed microtomography and terahertz pulsed imaging. Pharm Res. 2016;34:1037–52. https://doi.org/10.1007/S11095-016-2083-1.
Article
PubMed
PubMed Central
Google Scholar
Gioumouxouzis CI, Katsamenis OL, Fatouros DG. X-ray microfocus computed tomography: a powerful tool for structural and functional characterisation of 3D printed dosage forms. J Microsc. 2019. https://doi.org/10.1111/JMI.12798.
Article
PubMed
Google Scholar
Alhijjaj M, Nasereddin J, Belton P. Impact of processing parameters on the quality of pharmaceutical solid dosage forms produced by fused deposition modeling (FDM). Pharmaceutics. 2019;11:633. https://doi.org/10.3390/PHARMACEUTICS11120633.
CAS
Article
PubMed Central
Google Scholar
Trenfield SJ, Goyanes A, Telford R, et al. 3D printed drug products: non-destructive dose verification using a rapid point-and-shoot approach. Int J Pharm. 2018;549:283–92. https://doi.org/10.1016/J.IJPHARM.2018.08.002.
CAS
Article
PubMed
Google Scholar
Rachid O, Rawas-Qalaji M, Estelle F. Dissolution testing of sublingual tablets: a novel in vitro method. AAPS PharmSciTech. 2011;2011(12):544–52. https://doi.org/10.1208/s12249-011-9615-0.
CAS
Article
Google Scholar
Reynolds TD, Mitchell SA, Balwinski KM. Investigation of the effect of tablet surface area/volume on drug release from hydroxypropylmethylcellulose controlled-release matrix tablets. Drug Dev Ind Pharm. 2002. https://doi.org/10.1081/DDC-120003007.
Article
PubMed
Google Scholar
Goyanes A, Robles Martinez P, Buanz A, et al. Effect of geometry on drug release from 3D printed tablets. Int J Pharm. 2015. https://doi.org/10.1016/j.ijpharm.2015.04.069.
Article
PubMed
Google Scholar
Madzarevic M, Medarevic D, Vulovic A. Optimization and prediction of ibuprofen release from 3D DLP printlets using artificial neural networks. Pharmaceutics. 2019. https://doi.org/10.3390/PHARMACEUTICS11100544.
Article
PubMed
PubMed Central
Google Scholar
Obeid S, Madžarević M, Krkobabić M, et al. Predicting drug release from diazepam FDM printed tablets using deep learning approach: Influence of process parameters and tablet surface/volume ratio. Int J Pharm. 2021;601: 120507. https://doi.org/10.1016/J.IJPHARM.2021.120507.
CAS
Article
PubMed
Google Scholar
Novák M, Boleslavská T, Grof Z, et al. Virtual prototyping and parametric design of 3D-printed tablets based on the solution of inverse problem. AAPS PharmSciTech. 2018;19:3414–24. https://doi.org/10.1208/s12249-018-1176-z.
CAS
Article
PubMed
Google Scholar
Goyanes A, Madla CM, Umerji A, et al. Automated therapy preparation of isoleucine formulations using 3D printing for the treatment of MSUD: First single-centre, prospective, crossover study in patients. Int J Pharm. 2019;567: 118497. https://doi.org/10.1016/J.IJPHARM.2019.118497.
CAS
Article
PubMed
Google Scholar