Skip to main content
Log in

Chitin oligosaccharides for the food industry: production and applications

  • Review
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

Chitin oligosaccharides (CHOS), high-value-added oligomers linked by N-acetyl-d-glucosamine (GlcNAc, NAG), and a small amount of d-glucosamine (GlcN, GA), have aroused increasing interest due to their excellent biological properties, including antibacterial, anti-inflammatory, and immunoprotective activities, and intestinal regulation. The efficient production and utilization of CHOS with high performance can solve problems from chitin as biowaste. However, the large-scale production of well-defined CHOS has not been fully accomplished due to the limited biotechnology and separation methods, thus impeding the research on their biological functions as well as their accurate applications. In this review, we comprehensively summarize the current preparation methods of CHOS, including the chemical, physical, enzymatic and biosynthetic methods. The advantages and disadvantages of the methods are discussed in terms of efficiency, economy, and environmental effects. Furthermore, the applications of CHOS in the food industry and their contributions to human health based on their excellent bioactivities are expounded. It is hoped that this review will help in providing new insights into the production of CHOS with high precision, and support the application of CHOS in serving the food industry as nutritional supplements or foods for special medical purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

The manuscript does not contain any primary data.

Abbreviations

CHOS:

Chitin oligosaccharides; N-acetyl chitooligosaccharides

COS:

Chitooligosaccharides

GlcNAc, NAG:

N-Acetyl-d-glucosamine

GlcN, GA:

d-Glucosamine

DP:

Degree of polymerization

DA:

Degree of acetylation

MW:

Molecular weight

fdCOS:

Fully deacetylated chitooligosaccharides

paCOS:

Partially acetylated chitooligosaccharides

faCOS:

Fully acetylated chitooligosaccharides

References

  1. Tsurkan MH, Voronkina ALN, Khrunyk YLY, Wysokowski MRC, Petrenko A, Ehrlich EM. Progress in chitin analytics. Carbohydr Polym. 2021;252:21. https://doi.org/10.1016/j.carbpol.2020.117204.

    Article  CAS  Google Scholar 

  2. Ozel N, Elibol M. A review on the potential uses of deep eutectic solvents in chitin and chitosan related processes. Carbohydr Polym. 2021;262:10. https://doi.org/10.1016/j.carbpol.2021.117942.

    Article  CAS  Google Scholar 

  3. Dhole NP, Dar MA, Pandit RS. Recent advances in the bioprospection and applications of chitinolytic bacteria for valorization of waste chitin. Arch Microbiol. 2021;203(5):1953–69. https://doi.org/10.1007/s00203-021-02234-5.

    Article  CAS  Google Scholar 

  4. Zou Y, Robbens J, Heyndrickx M, Debode J, Raes K. Bioprocessing of marine crustacean side-streams into bioactives: a review. J Chem Technol Biotechnol. 2021;96(6):1465–74. https://doi.org/10.1002/jctb.6690.

    Article  CAS  Google Scholar 

  5. Deng JJ, Mao HH, Fang W, et al. Enzymatic conversion and recovery of protein, chitin, and astaxanthin from shrimp shell waste. J Clean Prod. 2020;271:10. https://doi.org/10.1016/j.jclepro.2020.122655.

    Article  CAS  Google Scholar 

  6. Dohendou M, Pakzad K, Nezafat Z, Nasrollahzadeh M, Dekamin MG. Progresses in chitin, chitosan, starch, cellulose, pectin, alginate, gelatin and gum based (nano)catalysts for the Heck coupling reactions: a review. Int J Biol Macromol. 2021;192:771–819. https://doi.org/10.1016/j.ijbiomac.2021.09.162.

    Article  CAS  Google Scholar 

  7. Wang HX, Li B, Ding FY, Ma TL. Improvement of properties of smart ink via chitin nanofiber and application as freshness indicator. Prog Org Coat. 2020;149:11. https://doi.org/10.1016/j.porgcoat.2020.105921.

    Article  CAS  Google Scholar 

  8. Rodriguez J, Neyrinck AM, Zhang ZX, et al. Metabolite profiling reveals the interaction of chitin-glucan with the gut microbiota. Gut Microbes. 2020;12(1):15. https://doi.org/10.1080/19490976.2020.1810530.

    Article  CAS  Google Scholar 

  9. Dong LY, Ariens RMC, Tomassen MM, Wichers HJ, Govers C. In vitro studies toward the use of chitin as nutraceutical: impact on the intestinal epithelium, macrophages, and microbiota. Mol Nutr Food Res. 2020;64(23):11. https://doi.org/10.1002/mnfr.202000324.

    Article  CAS  Google Scholar 

  10. Yang S, Jiang Z, Liu Y, Ma S. Preparation of chitin oligosaccharides and its monomer. Oligosaccharides of chitin and chitosan. Berlin: Springer; 2019. p. 55–81. https://doi.org/10.1007/978-981-13-9402-7_4.

    Book  Google Scholar 

  11. Henry García Y, Troncoso-Rojas R, Tiznado-Hernández ME, et al. Enzymatic treatments as alternative to produce chitin fragments of low molecular weight from Alternaria alternata. J Appl Polym Sci. 2019;136(15):47339. https://doi.org/10.1002/app.47339.

    Article  CAS  Google Scholar 

  12. Qin Z, Zhao L. The history of chito/chitin oligosaccharides and its monomer. Oligosaccharides of chitin and chitosan. New York: Springer; 2019. p. 3–14. https://doi.org/10.1007/978-981-13-9402-7_1.

    Book  Google Scholar 

  13. Tran TH, Nguyen H-L, Hao LT, et al. A ball milling-based one-step transformation of chitin biomass to organo-dispersible strong nanofibers passing highly time and energy consuming processes. Int J Biol Macromol. 2019;125:660–7. https://doi.org/10.1016/j.ijbiomac.2018.12.086.

    Article  CAS  Google Scholar 

  14. Kazami N, Sakaguchi M, Mizutani D, et al. A simple procedure for preparing chitin oligomers through acetone precipitation after hydrolysis in concentrated hydrochloric acid. Carbohydr Polym. 2015;132:304–10. https://doi.org/10.1016/j.carbpol.2015.05.082.

    Article  CAS  Google Scholar 

  15. Rauvolfová J, Weignerová L, Kuzma M, et al. Enzymatic synthesis of N-acetylglucosaminobioses by reverse hydrolysis: characterisation and application of the library of fungal β-N-acetylhexosaminidases. J Mol Catal B Enzym. 2004;29(1–6):259–64. https://doi.org/10.1016/j.molcatb.2004.02.007.

    Article  CAS  Google Scholar 

  16. Fu X, Guo Y, Jin Y, Ma M. Bioconversion of chitin waste using a cold-adapted chitinase to produce chitin oligosaccharides. Lwt. 2020;133: 109863. https://doi.org/10.1016/j.lwt.2020.109863.

    Article  CAS  Google Scholar 

  17. Ling M, Wu Y, Tian R, et al. Combinatorial pathway engineering of Bacillus subtilis for production of structurally defined and homogeneous chitooligosaccharides. Metab Eng. 2022;70:55–66. https://doi.org/10.1016/j.ymben.2022.01.008.

    Article  CAS  Google Scholar 

  18. Kumar M, Brar A, Vivekanand V, Pareek N. Bioconversion of chitin to bioactive chitooligosaccharides: amelioration and coastal pollution reduction by microbial resources. Mar Biotechnol. 2018;20(3):269–81. https://doi.org/10.1007/s10126-018-9812-x.

    Article  CAS  Google Scholar 

  19. Fan Z, Qin Y, Liu S, et al. The bioactivity of new chitin oligosaccharide dithiocarbamate derivatives evaluated against nematode disease (Meloidogyne incognita). Carbohyd Polym. 2019;224: 115155. https://doi.org/10.1016/j.carbpol.2019.115155.

    Article  CAS  Google Scholar 

  20. Gloria YC, Fuchs K, Chang T-H et al (2022) Chitin oligomers directly promote lymphoid innate and adaptive immune cell activation. bioRxiv. https://doi.org/10.1101/2022.04.06.487356

  21. Fuchs K, Cardona Gloria Y, Wolz OO, et al. The fungal ligand chitin directly binds TLR 2 and triggers inflammation dependent on oligomer size. EMBO Rep. 2018;19(12): e46065. https://doi.org/10.15252/embr.201846065.

    Article  CAS  Google Scholar 

  22. Liu X, Zhang Y, Liu Z, Xie X. Anti-tumor effect of chitin oligosaccharide plus cisplatin in vitro and in vivo. Onco Targets Ther. 2019;12:7581. https://doi.org/10.2147/OTT.S220619.

    Article  CAS  Google Scholar 

  23. Masuda S, Azuma K, Kurozumi S, et al. Anti-tumor properties of orally administered glucosamine and N-acetyl-D-glucosamine oligomers in a mouse model. Carbohyd Polym. 2014;111:783–7. https://doi.org/10.1016/j.carbpol.2014.04.102.

    Article  CAS  Google Scholar 

  24. Zheng J, Cheng G, Li Q, et al. Chitin oligosaccharide modulates gut microbiota and attenuates high-fat-diet-induced metabolic syndrome in mice. Mar Drugs. 2018;16(2):66. https://doi.org/10.3390/md16020066.

    Article  CAS  Google Scholar 

  25. Zhen H, Yan Q, Liu Y, Li Y, Yang S, Jiang Z. Chitin oligosaccharides alleviate atherosclerosis progress in ApoE-/- mice by regulating lipid metabolism and inhibiting inflammation. Food Sci Human Wellness. 2022;11(4):999–1009. https://doi.org/10.1016/j.fshw.2022.03.027.

    Article  CAS  Google Scholar 

  26. Xu L, Xia D, Zhang W, et al. Large scale preparation of single chitin oligomers by the combination of homogeneous acid hydrolysis and reversed phase preparative chromatography. Carbohydr Polym Technol Appl. 2020;1: 100016. https://doi.org/10.1016/j.carpta.2020.100016.

    Article  Google Scholar 

  27. Li K, Xing R, Liu S, Li P. Advances in preparation, analysis and biological activities of single chitooligosaccharides. Carbohyd Polym. 2016;139:178–90. https://doi.org/10.1016/j.carbpol.2015.12.016.

    Article  CAS  Google Scholar 

  28. Zhai X, Zhao H, Zhang M, et al. New stationary phase for hydrophilic interaction chromatography to separate chito-oligosaccharides with degree of polymerization 2–6. J Chromatogr B. 2018;1081:33–40. https://doi.org/10.1016/j.jchromb.2018.02.024.

    Article  CAS  Google Scholar 

  29. Sashiwa H, Fujishima S, Yamano N, et al. Enzymatic production of N-acetyl-D-glucosamine from chitin. Degradation study of N-acetylchitooligosaccharide and the effect of mixing of crude enzymes. Carbohydr Polym. 2003;51(4):391–5. https://doi.org/10.1016/S0144-8617(02)00192-3.

    Article  CAS  Google Scholar 

  30. Azuma K, Osaki T, Minami S, Okamoto Y. Anticancer and anti-inflammatory properties of chitin and chitosan oligosaccharides. J Funct Biomater. 2015;6(1):33–49. https://doi.org/10.3390/jfb6010033.

    Article  CAS  Google Scholar 

  31. Yin H, Du Y, Dong Z (2016) Chitin oligosaccharide and chitosan oligosaccharide: two similar but different plant elicitors. Frontiers Media SA, p 522. https://doi.org/10.3389/fpls.2016.00522

  32. Mo IV, Dalheim MØ, Aachmann FL, Schatz C, Christensen BE. 2, 5-Anhydro-d-mannose end-functionalized chitin oligomers activated by dioxyamines or dihydrazides as precursors of diblock oligosaccharides. Biomacromol. 2020;21(7):2884–95. https://doi.org/10.1021/ACS.BIOMAC.0C00620.

    Article  CAS  Google Scholar 

  33. Skjåk-Bræk G, Anthonsen T, Sandford P. Chitin and chitosan. London: Elsevier Applied Science; 1989. p. 415–29.

    Google Scholar 

  34. Sashiwa H, Saimoto H, Shigemasa Y, Tokura S. N-Acetyl group distribution in partially deacetylated chitins prepared under homogeneous conditions. Carbohyd Res. 1993;242:167–72. https://doi.org/10.1016/0008-6215(93)80031-9.

    Article  CAS  Google Scholar 

  35. Lin C-W, Lin J-C. Characterization and blood coagulation evaluation of the water-soluble chitooligosaccharides prepared by a facile fractionation method. Biomacromol. 2003;4(6):1691–7. https://doi.org/10.1021/bm034129n.

    Article  CAS  Google Scholar 

  36. Chen J-K, Shen C-R, Liu C-L. N-acetylglucosamine: production and applications. Mar Drugs. 2010;8(9):2493–516. https://doi.org/10.3390/md8092493.

    Article  CAS  Google Scholar 

  37. Ngo D-N, Lee S-H, Kim M-M, Kim S-K. Production of chitin oligosaccharides with different molecular weights and their antioxidant effect in RAW 264.7 cells. J Funct Foods. 2009;1(2):188–98. https://doi.org/10.1016/j.jff.2009.01.008.

    Article  CAS  Google Scholar 

  38. Ajavakom A, Supsvetson S, Somboot A, Sukwattanasinitt M. Products from microwave and ultrasonic wave assisted acid hydrolysis of chitin. Carbohyd Polym. 2012;90(1):73–7. https://doi.org/10.1016/j.carbpol.2012.04.064.

    Article  CAS  Google Scholar 

  39. Einbu A, Grasdalen H, Vårum KM. Kinetics of hydrolysis of chitin/chitosan oligomers in concentrated hydrochloric acid. Carbohyd Res. 2007;342(8):1055–62. https://doi.org/10.1016/j.carres.2007.02.022.

    Article  CAS  Google Scholar 

  40. Chang KLB, Lee J, Fu W-R. HPLC analysis of N-acetyl-chito-oligosaccharides during the acid hydrolysis of chitin. J Food Drug Anal. 2000;21:75–85. https://doi.org/10.1080/15332969.2000.9985420.

    Article  Google Scholar 

  41. Benhabiles M, Salah R, Lounici H, Drouiche N, Goosen M, Mameri N. Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocolloids. 2012;29(1):48–56. https://doi.org/10.1016/j.foodhyd.2012.02.013.

    Article  CAS  Google Scholar 

  42. Bohlmann JA, Schisler DO, Hwang K-O, et al (2004) N-acetyl-D-glucosamine and process for producing N-acetyl-D-glucosamine. U.S. Patent 6693188

  43. Machová E, Kvapilová K, Kogan G, Šandula J. Effect of ultrasonic treatment on the molecular weight of carboxymethylated chitin–glucan complex from Aspergillus niger. Ultrason Sonochem. 1999;5(4):169–72. https://doi.org/10.1016/S1350-4177(98)00045-5.

    Article  Google Scholar 

  44. Takahashi Y, Miki F, Nagase K. Effect of sonolysis on acid degradation of chitin to form oligosaccharides. Bull Chem Soc Jpn. 1995;68(7):1851–7. https://doi.org/10.1246/bcsj.68.1851.

    Article  CAS  Google Scholar 

  45. Chang KLB, Tai M-C, Cheng F-H. Kinetics and products of the degradation of chitosan by hydrogen peroxide. J Agric Food Chem. 2001;49(10):4845–51. https://doi.org/10.1021/jf001469g.

    Article  CAS  Google Scholar 

  46. Tian F, Liu Y, Hu K, Zhao B. The depolymerization mechanism of chitosan by hydrogen peroxide. J Mater Sci. 2003;38(23):4709–12. https://doi.org/10.1023/A:1027466716950.

    Article  CAS  Google Scholar 

  47. Allison CL, Lutzke A, Reynolds MM. Identification of low molecular weight degradation products from chitin and chitosan by electrospray ionization time-of-flight mass spectrometry. Carbohyd Res. 2020;493: 108046. https://doi.org/10.1016/j.carres.2020.108046.

    Article  CAS  Google Scholar 

  48. Dai JH, Li FK, Fu X. Towards shell biorefinery: advances in chemical-catalytic conversion of chitin biomass to organonitrogen chemicals. Chemsuschem. 2020;13(24):6498–508. https://doi.org/10.1002/cssc.202001955.

    Article  CAS  Google Scholar 

  49. Li J, Tian X, Hua T, et al. Chitosan natural polymer material for improving antibacterial properties of textiles. ACS Appl Bio Mater. 2021;4(5):4014–38. https://doi.org/10.1021/acsabm.1c00078.

    Article  CAS  Google Scholar 

  50. Jeon Y-J, Shahidi F, Kim S-K. Preparation of chitin and chitosan oligomers and their applications in physiological functional foods. Food Rev Intl. 2000;16(2):159–76. https://doi.org/10.1081/fri-100100286.

    Article  CAS  Google Scholar 

  51. Prashanth KH, Tharanathan R. Chitin/chitosan: modifications and their unlimited application potential—an overview. Trends Food Sci Technol. 2007;18(3):117–31. https://doi.org/10.1016/j.tifs.2006.10.022.

    Article  CAS  Google Scholar 

  52. Trombotto S, Ladavière C, Delolme F, Domard A. Chemical preparation and structural characterization of a homogeneous series of chitin/chitosan oligomers. Biomacromol. 2008;9(7):1731–8. https://doi.org/10.1021/bm800157x.

    Article  CAS  Google Scholar 

  53. Juarez-Arellano EA, Urzua-Valenzuela M, Pena-Rico MA, et al. Planetary ball-mill as a versatile tool to controlled potato starch modification to broaden its industrial applications. Food Res Int. 2021;140:10. https://doi.org/10.1016/j.foodres.2020.109870.

    Article  CAS  Google Scholar 

  54. Liu L, An X, Zhang H, et al. Ball milling pretreatment facilitating α-amylase hydrolysis for production of starch-based bio-latex with high performance. Carbohyd Polym. 2020;242: 116384. https://doi.org/10.1016/j.carbpol.2020.116384.

    Article  CAS  Google Scholar 

  55. Chen X, Gao YJ, Wang L, Chen HZ, Yan N. Effect of treatment methods on chitin structure and its transformation into nitrogen-containing chemicals. ChemPlusChem. 2015;80(10):1565–72. https://doi.org/10.1002/cplu.201500326.

    Article  CAS  Google Scholar 

  56. Osada M, Miura C, Nakagawa YS, Kaihara M, Nikaido M, Totani K. Effects of supercritical water and mechanochemical grinding treatments on physicochemical properties of chitin. Carbohydr Polym. 2013;92(2):1573–8. https://doi.org/10.1016/j.carbpol.2012.10.068.

    Article  CAS  Google Scholar 

  57. Wang YY, Zhang A, Mo XF, et al. The effect of ultrasonication on enzymatic hydrolysis of chitin to N-acetyl glucosamine via sequential and simultaneous strategies. Process Biochem. 2020;99:265–9. https://doi.org/10.1016/j.procbio.2020.09.013.

    Article  CAS  Google Scholar 

  58. Tanaka K, Yamamoto K, Kadokawa J. Facile nanofibrillation of chitin derivatives by gas bubbling and ultrasonic treatments in water. Carbohydr Res. 2014;398:25–30. https://doi.org/10.1016/j.carres.2014.08.008.

    Article  CAS  Google Scholar 

  59. Hou FR, He L, Ma XB, et al. Ultrasound enhanced the binding ability of chitinase onto chitin: from an AFM insight. Ultrason Sonochem. 2020;67:5. https://doi.org/10.1016/j.ultsonch.2020.105117.

    Article  CAS  Google Scholar 

  60. Zhai MM, Du JH, Zhang J, et al. Changes in the microstructure and enzymatic hydrolysis performance of chitin treated by steam explosion, high-pressure homogenization, and gamma radiation. J Appl Polym Sci. 2020;137(48):10. https://doi.org/10.1002/app.49597.

    Article  CAS  Google Scholar 

  61. Ma QY, Gao XZ, Bi XY, et al. Combination of steam explosion and ionic liquid pretreatments for efficient utilization of fungal chitin from citric acid fermentation residue. Biomass Bioenerg. 2021;145:8. https://doi.org/10.1016/j.biombioe.2021.105967.

    Article  CAS  Google Scholar 

  62. Fu X, Guo YX, Jin YG, Ma MH. Bioconversion of chitin waste using a cold-adapted chitinase to produce chitin oligosaccharides. LWT-Food Sci Technol. 2020;133:8. https://doi.org/10.1016/j.lwt.2020.109863.

    Article  CAS  Google Scholar 

  63. Abidin MZ, Junqueira-Goncalves MP, Khutoryanskiy VV, Niranjan K. Intensifying chitin hydrolysis by adjunct treatments - an overview. J Chem Technol Biotechnol. 2017;92(11):2787–98. https://doi.org/10.1002/jctb.5208.

    Article  CAS  Google Scholar 

  64. Guo MY, Wei XF, Chen SC, Xiao JH, Huang DW. Enhancing nonspecific enzymatic hydrolysis of chitin to oligosaccharides pretreated by acid and green solvents under simultaneous microwave-radiation. Int J Biol Macromol. 2022;209:631–41. https://doi.org/10.1016/j.ijbiomac.2022.04.032.

    Article  CAS  Google Scholar 

  65. Xie X-H, Fu X, Yan X-Y, Peng W-F, Kang L-X. A Broad-specificity chitinase from penicillium oxalicum k10 exhibits antifungal activity and biodegradation properties of chitin. Mar Drugs. 2021;19(7):356. https://doi.org/10.3390/md19070356.

    Article  CAS  Google Scholar 

  66. Singh AK, Chhatpar HS. Purification and characterization of chitinase from Paenibacillus sp. D1. Appl Biochem Biotechnol. 2011;164(1):77–88. https://doi.org/10.1007/s12010-010-9116-8.

    Article  CAS  Google Scholar 

  67. Li J, Zheng J, Liang Y, Yan R, Xu X, Lin J. Expression and characterization of a chitinase from Serratia marcescens. Protein Expr Purif. 2020;171: 105613. https://doi.org/10.1016/j.pep.2020.105613.

    Article  CAS  Google Scholar 

  68. Zhang W, Ma J, Yan Q, Jiang Z, Yang S. Biochemical characterization of a novel acidic chitinase with antifungal activity from Paenibacillus xylanexedens Z2–4. Int J Biol Macromol. 2021;182:1528–36. https://doi.org/10.1016/j.ijbiomac.2021.05.111.

    Article  CAS  Google Scholar 

  69. Gao L, Sun J, Secundo F, Gao X, Xue C, Mao X. Cloning, characterization and substrate degradation mode of a novel chitinase from Streptomyces albolongus ATCC 27414. Food Chem. 2018;261:329–36. https://doi.org/10.1016/j.foodchem.2018.04.068.

    Article  CAS  Google Scholar 

  70. Menghiu G, Ostafe V, Prodanovic R, Fischer R, Ostafe R. Biochemical characterization of chitinase A from Bacillus licheniformis DSM8785 expressed in Pichia pastoris KM71H. Protein Expr Purif. 2019;154:25–32. https://doi.org/10.1016/j.pep.2018.09.007.

    Article  CAS  Google Scholar 

  71. Tao H, Lauterbach L, Bian GK, et al. Discovery of non-squalene triterpenes. Nature. 2022. https://doi.org/10.1038/s41586-022-04773-3.

    Article  Google Scholar 

  72. Yu P, Wang X, Ma J, Zhang Q, Chen Q. Chaperone-assisted soluble expression and characterization of chitinase chiZJ408 in Escherichia coli BL21 and the chitin degradation by recombinant enzyme. Prep Biochem Biotechnol. 2022;52(3):273–82. https://doi.org/10.1080/10826068.2021.1934698.

    Article  CAS  Google Scholar 

  73. Wang S, Fu G, Li J, et al. High-efficiency secretion and directed evolution of chitinase bcchia1 in Bacillus subtilis for the conversion of chitinaceous wastes into chitooligosaccharides. Front Bioeng Biotechnol. 2020;8:432. https://doi.org/10.3389/fbioe.2020.00432.

    Article  Google Scholar 

  74. Su HP, Gao L, Sun JA, Mao XZ. Engineering a carbohydrate binding module to enhance chitinase catalytic efficiency on insoluble chitinous substrate. Food Chem. 2021;355:8. https://doi.org/10.1016/j.foodchem.2021.129462.

    Article  CAS  Google Scholar 

  75. Sasi A, Duraipandiyan N, Marikani K, Dhanasekaran S, Al-Dayan N, Venugopal D. Identification and characterization of a newly isolated chitinase-producing strain Bacillus licheniformis SSCL-10 for chitin degradation. Archaea. 2020. https://doi.org/10.1155/2020/8844811.

    Article  Google Scholar 

  76. Gomaa E, El-Mahdy O. Improvement of chitinase production by Bacillus thuringiensis NM101-19 for antifungal biocontrol through physical mutation. Microbiology. 2018;87(4):472–85. https://doi.org/10.1134/s0026261718040094.

    Article  CAS  Google Scholar 

  77. Kumar M, Madhuprakash J, Balan V, Singh AK, Vivekanand V, Pareek N. Chemoenzymatic production of chitooligosaccharides employing ionic liquids and Thermomyces lanuginosus chitinase. Bioresour Technol. 2021;337:10. https://doi.org/10.1016/j.biortech.2021.125399.

    Article  CAS  Google Scholar 

  78. Zhang A, Wei GG, Mo XF, Zhou N, Chen KQ, Ouyang PK. Enzymatic hydrolysis of chitin pretreated by bacterial fermentation to obtain pure N-acetyl-D-glucosamine. Green Chem. 2018;20(10):2320–7. https://doi.org/10.1039/c8gc00265g.

    Article  CAS  Google Scholar 

  79. Singh AK, Chhatpar HS. Purification and characterization of chitinase from Paenibacillus sp D1. Appl Biochem Biotechnol. 2011;164(1):77–88. https://doi.org/10.1007/s12010-010-9116-8.

    Article  CAS  Google Scholar 

  80. Yang SQ, Fu X, Yan QJ, Guo Y, Liu ZQ, Jiang ZQ. Cloning, expression, purification and application of a novel chitinase from a thermophilic marine bacterium Paenibacillus barengoltzii. Food Chem. 2016;192:1041–8. https://doi.org/10.1016/j.foodchem.2015.07.092.

    Article  CAS  Google Scholar 

  81. Vaikuntapu PR, Mallakuntla MK, Das SN, et al. Applicability of endochitinase of Flavobacterium johnsoniae with transglycosylation activity in generating long-chain chitooligosaccharides. Int J Biol Macromol. 2018;117:62–71. https://doi.org/10.1016/j.ijbiomac.2018.05.129.

    Article  CAS  Google Scholar 

  82. Li RK, Hu YJ, Ng TB, et al. Expression and biochemical characterization of a novel chitinase ChiT-7 from the metagenome in the soil of a mangrove tidal flat in China. Int J Biol Macromol. 2020;158:1125–34. https://doi.org/10.1016/j.ijbiomac.2020.04.242.

    Article  CAS  Google Scholar 

  83. Li JC, Zheng JM, Liang YH, Yan RX, Xu XQ, Lin J. Expression and characterization of a chitinase from Serratia marcescens. Protein Expr Purif. 2020;171:6. https://doi.org/10.1016/j.pep.2020.105613.

    Article  CAS  Google Scholar 

  84. Deng JJ, Shi D, Mao HH, et al. Heterologous expression and characterization of an antifungal chitinase (Chit46) from Trichoderma harzianum GIM 3442 and its application in colloidal chitin conversion. Int J Biol Macromol. 2019;134:113–21. https://doi.org/10.1016/j.ijbiomac.2019.04.177.

    Article  CAS  Google Scholar 

  85. Krolicka M, Hinz SWA, Koetsier MJ, et al. Chitinase Chi1 from Myceliophthora thermophila C1, a thermostable enzyme for chitin and chitosan depolymerization. J Agric Food Chem. 2018;66(7):1658–69. https://doi.org/10.1021/acs.jafc.7b04032.

    Article  CAS  Google Scholar 

  86. Berini F, Presti I, Beltrametti F, et al. Production and characterization of a novel antifungal chitinase identified by functional screening of a suppressive-soil metagenome. Microb Cell Fact. 2017;16:15. https://doi.org/10.1186/s12934-017-0634-8.

    Article  CAS  Google Scholar 

  87. Wang M, Zheng F, Wang T, et al. Characterization of Stackebrandtia nassauensis GH 20 beta-hexosaminidase, a versatile biocatalyst for chitobiose degradation. Int J Mol Sci. 2019;20(5):14. https://doi.org/10.3390/ijms20051243.

    Article  CAS  Google Scholar 

  88. Du C, Jiang S, Jiang S, Zhou Y, Zhang G. A Bacillus pumilus originated β-N-acetylglucosaminidase for chitin combinatory hydrolysis and exploration of its thermostable mechanism. Int J Biol Macromol. 2019;132:1282–9. https://doi.org/10.1016/j.ijbiomac.2019.04.054.

    Article  CAS  Google Scholar 

  89. Chen BQZ, Zhao L. Gene Cloning, Expression and Characterization of β-N-Acetylglucosaminidase from Bacillus amyloliquefaciens. Food Sci. 2020;41(08):123–9. https://doi.org/10.7506/spkx1002-6630-20190221-132 (in Chinese).

    Article  Google Scholar 

  90. Krolicka M, Hinz SW, Koetsier MJ, Eggink G, van den Broek LA, Boeriu CG. β-N-Acetylglucosaminidase MthNAG from Myceliophthora thermophila C1, a thermostable enzyme for production of N-acetylglucosamine from chitin. Appl Microbiol Biotechnol. 2018;102(17):7441–54. https://doi.org/10.1007/s00253-018-9166-3.

    Article  CAS  Google Scholar 

  91. Wang YC, Lien TS, Chen NY, Hsu TH. Purification and Characterization of beta-N-acetylglucosaminidase from Grifola frondosa. Bioresources. 2021;16(4):7233–47. https://doi.org/10.15376/biores.16.4.7234-7248.

    Article  CAS  Google Scholar 

  92. Adharis A, Loos K. Synthesis of glycomonomers via biocatalytic methods. In: Bruns N, Loos K, editors. Enzymatic polymerizations, vol. 627. Methods in enzymology. London: Academic Press Ltd-Elsevier Science Ltd; 2019. p. 215–47. https://doi.org/10.1016/bs.mie.2019.04.015.

    Chapter  Google Scholar 

  93. de Albuquerque TL, de Sousa M, Silva NCG, et al. β-Galactosidase from Kluyveromyces lactis: characterization, production, immobilization and applications—a review. Int J Biol Macromol. 2021;191:881–98. https://doi.org/10.1016/j.ijbiomac.2021.09.133.

    Article  CAS  Google Scholar 

  94. Adharis A, Vesper D, Koning N, Loos K. Synthesis of (meth)acrylamide-based glycomonomers using renewable resources and their polymerization in aqueous systems. Green Chem. 2018;20(2):476–84. https://doi.org/10.1039/c7gc03023a.

    Article  CAS  Google Scholar 

  95. Sinha S, Chand S, Tripathi P. Enzymatic production of glucosamine and chitooligosaccharides using newly isolated exo-β-D-glucosaminidase having transglycosylation activity. 3 Biotech. 2016;6(1):1–9. https://doi.org/10.1007/s13205-015-0330-5.

    Article  CAS  Google Scholar 

  96. Xu P, Liang S, Zong MH, Lou WY. Ionic liquids for regulating biocatalytic process: achievements and perspectives. Biotechnol Adv. 2021;51:18. https://doi.org/10.1016/j.biotechadv.2021.107702.

    Article  CAS  Google Scholar 

  97. Sheldon RA, Brady D. Streamlining design, engineering, and applications of enzymes for sustainable biocatalysis. ACS Sustain Chem Eng. 2021;9(24):8032–52. https://doi.org/10.1021/acssuschemeng.1c01742.

    Article  CAS  Google Scholar 

  98. Zhang A, Mo X, Zhou N, et al. A novel bacterial β-N-acetyl glucosaminidase from Chitinolyticbacter meiyuanensis possessing transglycosylation and reverse hydrolysis activities. Biotechnol Biofuels. 2020;13(1):1–14. https://doi.org/10.1186/s13068-020-01754-4.

    Article  CAS  Google Scholar 

  99. Hui-Lei Y, Jian-He X, Guo-Qiang L. Application of glycosidase to glycoside synthesis. Chin J Org Chem. 2006;26(8):1052–8.

    Google Scholar 

  100. Nielsen MM, Pedersen CM. Catalytic glycosylations in oligosaccharide synthesis. Chem Rev. 2018;118(17):8285–358. https://doi.org/10.1021/acs.chemrev.8b00144.

    Article  CAS  Google Scholar 

  101. Muschiol J, Vuillemin M, Meyer AS, Zeuner B. β-N-acetylhexosaminidases for carbohydrate synthesis via trans-glycosylation. Catalysts. 2020;10(4):365. https://doi.org/10.3390/catal10040365.

    Article  CAS  Google Scholar 

  102. Uehara A, Takahashi N, Moriyama M, Hirano T, Hakamata W, Nishio T. Synthesis of chitin oligosaccharides using dried Stenotrophomonas maltophilia cells containing a transglycosylation reaction-catalyzing β-N-acetylhexosaminidase as a whole-cell catalyst. Appl Biochem Biotechnol. 2018;184(2):673–84. https://doi.org/10.1007/s12010-017-2585-2.

    Article  CAS  Google Scholar 

  103. Bhuvanachandra B, Madhuprakash J, Podile AR. Active-site mutations improved the transglycosylation activity of Stenotrophomonas maltophilia chitinase A. BBA-Proteins Proteomics. 2018;1866(3):407–14. https://doi.org/10.1016/j.bbapap.2017.12.003.

    Article  CAS  Google Scholar 

  104. Mallakuntla MK, Vaikuntapu PR, Bhuvanachandra B, Das SN, Podile AR. Transglycosylation by a chitinase from Enterobacter cloacae subsp cloacae generates longer chitin oligosaccharides. Sci Rep. 2017;7:12. https://doi.org/10.1038/s41598-017-05140-3.

    Article  CAS  Google Scholar 

  105. Aronson NN, Halloran BA, Alexeyev MF, et al. Mutation of a conserved tryptophan in the chitin-binding cleft of Serratia marcescens chitinase A enhances transglycosylation. Biosci Biotechnol Biochem. 2006;70(1):243–51. https://doi.org/10.1271/bbb.70.243.

    Article  CAS  Google Scholar 

  106. Mackenzie LF, Wang QP, Warren RAJ, Withers SG. Glycosynthases: mutant glycosidases for oligosaccharide synthesis. J Am Chem Soc. 1998;120(22):5583–4. https://doi.org/10.1021/ja980833d.

    Article  CAS  Google Scholar 

  107. Gloster TM, Turkenburg JP, Potts JR, Henrissat B, Davies GJ. Divergence of catalytic mechanism within a glycosidase family provides insight into evolution of carbohydrate metabolism by human gut flora. Chem Biol. 2008;15(10):1058–67. https://doi.org/10.1016/j.chembiol.2008.09.005.

    Article  CAS  Google Scholar 

  108. Alsina C, Faijes M, Planas A. Glycosynthase-type GH18 mutant chitinases at the assisting catalytic residue for polymerization of chitooligosaccharides. Carbohydr Res. 2019;478:1–9. https://doi.org/10.1016/j.carres.2019.04.001.

    Article  CAS  Google Scholar 

  109. Ohnuma T, Dozen S, Honda Y, Kitaoka M, Fukamizo T. A glycosynthase derived from an inverting chitinase with an extended binding cleft. J Biochem. 2016;160(2):93–100. https://doi.org/10.1093/jb/mvw014.

    Article  CAS  Google Scholar 

  110. Ohnuma T, Fukuda T, Dozen S, Honda Y, Kitaoka M, Fukamizo T. A glycosynthase derived from an inverting GH19 chitinase from the moss Bryum coronatum. Biochem J. 2012;444:437–43. https://doi.org/10.1042/bj20120036.

    Article  CAS  Google Scholar 

  111. Slámová K, Krejzová J, Marhol P, et al. Synthesis of derivatized chitooligomers using transglycosidases engineered from the fungal GH20 β-N-acetylhexosaminidase. Adv Synth Catal. 2015;357(8):1941–50. https://doi.org/10.1002/adsc.201500075.

    Article  CAS  Google Scholar 

  112. Alsina C, Sancho-Vaello E, Aranda-Martínez A, Faijes M, Planas A. Auxiliary active site mutations enhance the glycosynthase activity of a GH18 chitinase for polymerization of chitooligosaccharides. Carbohydr Polym. 2021;252:117121. https://doi.org/10.1016/j.carbpol.2020.117121.

    Article  CAS  Google Scholar 

  113. Martinez EA, Boer H, Koivula A, et al. Engineering chitinases for the synthesis of chitin oligosaccharides: catalytic amino acid mutations convert the GH-18 family glycoside hydrolases into transglycosylases. J Mol Catal B Enzym. 2012;74(1–2):89–96. https://doi.org/10.1016/j.molcatb.2011.09.003.

    Article  CAS  Google Scholar 

  114. Lu M, Mosleh I, Abbaspourrad A. Engineered microbial routes for human milk oligosaccharides synthesis. ACS Synth Biol. 2021;10(5):923–38. https://doi.org/10.1021/acssynbio.1c00063.

    Article  CAS  Google Scholar 

  115. Pérez-Escalante E, Alatorre-Santamaría S, Castañeda-Ovando A, et al. Human milk oligosaccharides as bioactive compounds in infant formula: recent advances and trends in synthetic methods. Crit Rev Food Sci Nutr. 2022;62(1):181–214. https://doi.org/10.1080/10408398.2020.1813683.

    Article  CAS  Google Scholar 

  116. Lilge L, Ersig N, Hubel P, et al. Surfactin shows relatively low antimicrobial activity against Bacillus subtilis and other bacterial model organisms in the absence of synergistic metabolites. Microorganisms. 2022;10(4):779. https://doi.org/10.3390/microorganisms10040779.

    Article  CAS  Google Scholar 

  117. Xu G, Zha J, Cheng H, et al. Engineering Corynebacterium glutamicum for the de novo biosynthesis of tailored poly-γ-glutamic acid. Metabolic engineering. 2019;56:39–49. https://doi.org/10.1016/j.ymben.2019.08.011.

    Article  CAS  Google Scholar 

  118. Geremia RA, Mergaert P, Geelen D, Van Montagu M, Holsters M. The NodC protein of Azorhizobium caulinodans is an N-acetylglucosaminyltransferase. Proc Natl Acad Sci. 1994;91(7):2669–73. https://doi.org/10.1073/pnas.91.7.2669.

    Article  CAS  Google Scholar 

  119. Tabata K, Koizumi S, Endo T, Ozaki A. Production of UDP-N-acetylglucosamine by coupling metabolically engineered bacteria. Biotechnol Lett. 2000;22(6):479–83. https://doi.org/10.1023/A:1005627820455.

    Article  CAS  Google Scholar 

  120. Cottaz S, Samain E. Genetic engineering of Escherichia coli for the production of NI, NII-diacetylchitobiose (chitinbiose) and its utilization as a primer for the synthesis of complex carbohydrates. Metab Eng. 2005;7(4):311–7. https://doi.org/10.1016/j.ymben.2005.05.004.

    Article  CAS  Google Scholar 

  121. Kamst E, van der Drift K, Thomas-Oates JE, Lugtenberg B, Spaink HP. Mass spectrometric analysis of chitin oligosaccharides produced by Rhizobium NodC protein in Escherichia coli. J Bacteriol. 1995;177(21):6282–5. https://doi.org/10.1128/jb.177.21.6282-6285.1995.

    Article  CAS  Google Scholar 

  122. Samain E, Drouillard S, Heyraud A, Driguez H, Geremia RA. Gram-scale synthesis of recombinant chitooligosaccharides in Escherichia coli. Carbohydr Res. 1997;302(1–2):35–42. https://doi.org/10.1016/S0008-6215(97)00107-9.

    Article  CAS  Google Scholar 

  123. Zhang D, Wang PG, Qi Q. A two-step fermentation process for efficient production of penta-N-acetyl-chitopentaose in recombinant Escherichia coli. Biotech Lett. 2007;29(11):1729–33. https://doi.org/10.1007/s10529-007-9462-y.

    Article  CAS  Google Scholar 

  124. Rodríguez-Díaz J, Rubio-del-Campo A, Yebra MJ. Regulatory insights into the production of UDP-N-acetylglucosamine by Lactobacillus casei. Bioengineered. 2012;3(6):339–42. https://doi.org/10.4161/bioe.21271.

    Article  Google Scholar 

  125. Ying H, Chen X, Cao H, et al. Enhanced uridine diphosphate N-acetylglucosamine production using whole-cell catalysis. Appl Microbiol Biotechnol. 2009;84(4):677–83. https://doi.org/10.1007/s00253-009-2016-6.

    Article  CAS  Google Scholar 

  126. Deng M-D, Severson DK, Grund AD, et al. Metabolic engineering of Escherichia coli for industrial production of glucosamine and N-acetylglucosamine. Metab Eng. 2005;7(3):201–14. https://doi.org/10.1016/j.ymben.2005.02.001.

    Article  CAS  Google Scholar 

  127. Chen X, Liu L, Li J, Du G, Chen J. Improved glucosamine and N-acetylglucosamine production by an engineered Escherichia coli via step-wise regulation of dissolved oxygen level. Bioresour Technol. 2012;110:534–8. https://doi.org/10.1016/j.biortech.2011.12.015.

    Article  CAS  Google Scholar 

  128. Chen X, Liu L, Li J, Liu J, Du G, Chen J. Optimization of glucose feeding approaches for enhanced glucosamine and N-acetylglucosamine production by an engineered Escherichia coli. J Ind Microbiol Biotechnol. 2012;39(2):359–65. https://doi.org/10.1007/s10295-011-1046-0.

    Article  CAS  Google Scholar 

  129. Zhu Y, Liu Y, Li J, et al. An optimal glucose feeding strategy integrated with step-wise regulation of the dissolved oxygen level improves N-acetylglucosamine production in recombinant Bacillus subtilis. Bioresour Technol. 2015;177:387–92. https://doi.org/10.1016/j.biortech.2014.11.055.

    Article  CAS  Google Scholar 

  130. Liu Y, Link H, Liu L, Du G, Chen J, Sauer U. A dynamic pathway analysis approach reveals a limiting futile cycle in N-acetylglucosamine overproducing Bacillus subtilis. Nat Commun. 2016;7(1):1–9. https://doi.org/10.1038/ncomms11933.

    Article  CAS  Google Scholar 

  131. Gu Y, Xu X, Wu Y, et al. Advances and prospects of Bacillus subtilis cellular factories: from rational design to industrial applications. Metab Eng. 2018;50:109–21. https://doi.org/10.1016/j.ymben.2018.05.006.

    Article  CAS  Google Scholar 

  132. Ma W, Liu Y, Shin H-D, et al. Metabolic engineering of carbon overflow metabolism of Bacillus subtilis for improved N-acetyl-glucosamine production. Bioresour Technol. 2018;250:642–9. https://doi.org/10.1016/j.biortech.2017.10.007.

    Article  CAS  Google Scholar 

  133. Deng C, Lv X, Liu Y, et al. Metabolic engineering of Corynebacterium glutamicum S9114 based on whole-genome sequencing for efficient N-acetylglucosamine synthesis. Synth Syst Biotechnol. 2019;4(3):120–9. https://doi.org/10.1016/j.synbio.2019.05.002.

    Article  Google Scholar 

  134. Deng C, Lv X, Li J, et al. Synergistic improvement of N-acetylglucosamine production by engineering transcription factors and balancing redox cofactors. Metab Eng. 2021;67:330–46. https://doi.org/10.1016/j.ymben.2021.07.012.

    Article  CAS  Google Scholar 

  135. Lee S-W, Oh M-K. A synthetic suicide riboswitch for the high-throughput screening of metabolite production in Saccharomyces cerevisiae. Metab Eng. 2015;28:143–50. https://doi.org/10.1016/j.ymben.2015.01.004.

    Article  CAS  Google Scholar 

  136. Lee SW, Oh MK. Improved production of N-acetylglucosamine in Saccharomyces cerevisiae by reducing glycolytic flux. Biotechnol Bioeng. 2016;113(11):2524–8.

    Article  CAS  Google Scholar 

  137. Cronan JE (2014) Escherichia coli as an experimental organism. eLS. https://doi.org/10.1002/9780470015902.a0002026.pub2

  138. Qin Z, Hou Y, Ahamed W, Li Y, Zhao L. Detection and separation of chito/chitin oligosaccharides. Oligosaccharides of chitin and chitosan. New York: Springer; 2019. p. 83–105.

    Book  Google Scholar 

  139. Sinha S, Chand S, Tripathi P. Production, purification and characterization of a new chitosanase enzyme and improvement of chitosan pentamer and hexamer yield in an enzyme membrane reactor. Biocatal Biotransform. 2014;32(4):208–13. https://doi.org/10.3109/10242422.2014.934364.

    Article  CAS  Google Scholar 

  140. Dong H, Wang Y, Zhao L, et al. Purification of DP 6 to 8 chitooligosaccharides by nanofiltration from the prepared chitooligosaccharides syrup. Bioresour Bioprocess. 2014;1(1):1–12. https://doi.org/10.1186/s40643-014-0020-x.

    Article  CAS  Google Scholar 

  141. López-Ruiz R, Romero-González R, Frenich AG. Ultrahigh-pressure liquid chromatography-mass spectrometry: an overview of the last decade. TrAC Trends Anal Chem. 2019;118:170–81. https://doi.org/10.1016/j.trac.2019.05.044.

    Article  CAS  Google Scholar 

  142. Maciel EVS, de Toffoli AL, Sobieski E, Nazário CED, Lancas FM. Miniaturized liquid chromatography focusing on analytical columns and mass spectrometry: a review. Anal Chim Acta. 2020;1103:11–31. https://doi.org/10.1016/j.aca.2019.12.064.

    Article  CAS  Google Scholar 

  143. Fang Y-M, Lin D-Q, Yao S-J. Review on biomimetic affinity chromatography with short peptide ligands and its application to protein purification. J Chromatogr A. 2018;1571:1–15. https://doi.org/10.1016/j.chroma.2018.07.082.

    Article  CAS  Google Scholar 

  144. Block H, Maertens B, Spriestersbach A, et al. Immobilized-metal affinity chromatography (IMAC): a review. Methods Enzymol. 2009;463:439–73. https://doi.org/10.1016/S0076-6879(09)63027-5.

    Article  CAS  Google Scholar 

  145. Abla M, Ladaviere C, Trombotto S. Impact of HILIC amino-based column equilibration conditions on the analysis of chitooligosaccharides. Chromatographia. 2022;85(1):55–63. https://doi.org/10.1007/s10337-021-04109-9.

    Article  CAS  Google Scholar 

  146. Hamer SN, Cord-Landwehr S, Biarnés X, et al. Enzymatic production of defined chitosan oligomers with a specific pattern of acetylation using a combination of chitin oligosaccharide deacetylases. Sci Rep. 2015;5(1):1–9. https://doi.org/10.1038/srep08716.

    Article  CAS  Google Scholar 

  147. Yu Y, Li K. Adsorption characteristics of chitooligosaccharides onto activated charcoal in aqueous solutions. J Oceanol Limnol. 2020;38(2):342–50. https://doi.org/10.1007/s00343-019-8327-2.

    Article  Google Scholar 

  148. Li K, Xing R, Liu S, et al. Separation of chito-oligomers with several degrees of polymerization and study of their antioxidant activity. Carbohydr Polym. 2012;88(3):896–903. https://doi.org/10.1016/j.carbpol.2012.01.033.

    Article  CAS  Google Scholar 

  149. Hou Y, Liu L, He Q, et al. Adsorption behaviors and kinetics studies of chitooligosaccharides with specific degree of polymerization on a novel ion-exchange resin. Chem Eng J. 2022;430:132630. https://doi.org/10.1016/j.cej.2021.132630.

    Article  CAS  Google Scholar 

  150. Xu QCL, Qin Z, Chen QM, Qiu YJ, Zhao LM. Monomer preparation and structure analysis of chitobiose and chitotriose. Food Industry Technol. 2017;13:13–8. https://doi.org/10.13386/j.issn1002-0306.2017.13.003 (in Chinese).

    Article  Google Scholar 

  151. Li X, Piao X, Kim S, et al. Effects of chito-oligosaccharide supplementation on performance, nutrient digestibility, and serum composition in broiler chickens. Poultry Sci. 2007;86(6):1107–14. https://doi.org/10.1093/ps/86.6.1107.

    Article  CAS  Google Scholar 

  152. Zhou J, Harindintwali JD, Yang W, et al. Engineering of a chitosanase fused to a carbohydrate-binding module for continuous production of desirable chitooligosaccharides. Carbohyd Polym. 2021;273: 118609. https://doi.org/10.1016/j.carbpol.2021.118609.

    Article  CAS  Google Scholar 

  153. Procopio FR, Ferraz MC, Paulino BN, do Amaral Sobral PJ, Hubinger MD. Spice oleoresins as value-added ingredient for food industry: recent advances and perspectives. Trends Food Sci Technol. 2022. https://doi.org/10.1016/j.tifs.2022.02.010.

    Article  Google Scholar 

  154. Schröder P, Wattjes J, Schönhoff M, Moerschbacher BM, Cramer C, Cord-Landwehr S. Quantification of chitosan in aqueous solutions by enzymatic hydrolysis and oligomer analysis via HPLC-ELSD. Carbohydr Polym. 2022;283:119141. https://doi.org/10.1016/j.carbpol.2022.119141.

    Article  CAS  Google Scholar 

  155. Aider M, Arul J, Mateescu A-M, Brunet S, Bazinet L. Electromigration of chitosan D-glucosamine and oligomers in dilute aqueous solutions. J Agric Food Chem. 2006;54(17):6352–7. https://doi.org/10.1021/jf060165c.

    Article  CAS  Google Scholar 

  156. Liang S, Sun Y, Dai X. A review of the preparation, analysis and biological functions of chitooligosaccharide. Int J Mol Sci. 2018;19(8):2197. https://doi.org/10.3390/ijms19082197.

    Article  CAS  Google Scholar 

  157. Grifoll-Romero L, Pascual S, Aragunde H, Biarnés X, Planas A. Chitin deacetylases: structures, specificities, and biotech applications. Polymers. 2018;10(4):352. https://doi.org/10.3390/polym10040352.

    Article  CAS  Google Scholar 

  158. Deng J-J, Shi D, Mao H-H, et al. Heterologous expression and characterization of an antifungal chitinase (Chit46) from Trichoderma harzianum GIM 3442 and its application in colloidal chitin conversion. Int J Biol Macromol. 2019;134:113–21. https://doi.org/10.1016/j.ijbiomac.2019.04.177.

    Article  CAS  Google Scholar 

  159. Liaqat F, Eltem R. Chitooligosaccharides and their biological activities: a comprehensive review. Carbohydr Polym. 2018;184:243–59. https://doi.org/10.1016/j.carbpol.2017.12.067.

    Article  CAS  Google Scholar 

  160. Ji X, Zhu L, Chang K, et al. Chitooligosaccahrides: digestion characterization and effect of the degree of polymerization on gut microorganisms to manage the metabolome functional diversity in vitro. Carbohydr Polym. 2022;275:118716. https://doi.org/10.1016/j.carbpol.2021.118716.

    Article  CAS  Google Scholar 

  161. Chae SY, Jang M-K, Nah J-W. Influence of molecular weight on oral absorption of water soluble chitosans. J Control Release. 2005;102(2):383–94. https://doi.org/10.1016/j.jconrel.2004.10.012.

    Article  CAS  Google Scholar 

  162. Zeng L, Qin C, Wang W, Chi W, Li W. Absorption and distribution of chitosan in mice after oral administration. Carbohydr Polym. 2008;71(3):435–40. https://doi.org/10.1016/j.carbpol.2007.06.016.

    Article  CAS  Google Scholar 

  163. Shao K, Han B, Dong W, Song F, Liu W, Liu W. Pharmacokinetics and biodegradation performance of a hydroxypropyl chitosan derivative. J Ocean Univ China. 2015;14(5):888–96. https://doi.org/10.1007/s11802-015-2600-6.

    Article  CAS  Google Scholar 

  164. Zhai X, Yuan S, Yang X, et al. Chitosan oligosaccharides induce apoptosis in human renal carcinoma via reactive-oxygen-species-dependent endoplasmic reticulum stress. J Agric Food Chem. 2019;67(6):1691–701. https://doi.org/10.1021/acs.jafc.8b06941.

    Article  CAS  Google Scholar 

  165. Liu W, Li X, Zhao Z, et al. Effect of chitooligosaccharides on human gut microbiota and antiglycation. Carbohydr Polym. 2020;242:116413. https://doi.org/10.1016/j.carbpol.2020.116413.

    Article  CAS  Google Scholar 

  166. Ji X-G, Chang K-L, Chen M, et al. In vitro fermentation of chitooligosaccharides and their effects on human fecal microbial community structure and metabolites. Lwt. 2021;144:111224. https://doi.org/10.1016/j.lwt.2021.111224.

    Article  CAS  Google Scholar 

  167. Chang S-H, Lin Y-Y, Wu G-J, Huang C-H, Tsai GJ. Effect of chitosan molecular weight on anti-inflammatory activity in the RAW 264.7 macrophage model. Int J Biol Macromol. 2019;131:167–75. https://doi.org/10.1016/j.ijbiomac.2019.02.066.

    Article  CAS  Google Scholar 

  168. Zheng B, Wen Z-S, Huang Y-J, Xia M-S, Xiang X-W, Qu Y-L. Molecular weight-dependent immunostimulative activity of low molecular weight chitosan via regulating NF-κB and AP-1 signaling pathways in RAW264.7 macrophages. Marine drugs. 2016;14(9):169. https://doi.org/10.3390/md14090169.

    Article  CAS  Google Scholar 

  169. Mateos-Aparicio I, Mengíbar M, Heras A. Effect of chito-oligosaccharides over human faecal microbiota during fermentation in batch cultures. Carbohydr Polym. 2016;137:617–24. https://doi.org/10.1016/j.carbpol.2015.11.011.

    Article  CAS  Google Scholar 

  170. Selenius O, Korpela J, Salminen S, Gallego CG. Effect of chitin and chitooligosaccharide on in vitro growth of Lactobacillus rhamnosus GG and Escherichia coli TG. Appl Food Biotechnol. 2018;5(3):163–72. https://doi.org/10.22037/afb.v5i3.20468.

    Article  CAS  Google Scholar 

  171. Ji X, Chen M, Zhao M, et al. Effects of chitooligosaccharides on the rebalance of gut microorganisms and their metabolites in patients with nonalcoholic fatty liver disease. J Funct Foods. 2021;77:104333. https://doi.org/10.1016/j.jff.2020.104333.

    Article  CAS  Google Scholar 

  172. Yang D, Hu C, Deng X, et al. Therapeutic effect of chitooligosaccharide tablets on lipids in high-fat diets induced hyperlipidemic rats. Molecules. 2019;24(3):514. https://doi.org/10.3390/molecules24030514.

    Article  CAS  Google Scholar 

  173. Wang Q, Jiang Y, Luo X, et al. Chitooligosaccharides modulate glucose-lipid metabolism by suppressing SMYD3 pathways and regulating gut microflora. Mar Drugs. 2020;18(1):69. https://doi.org/10.3390/md18010069.

    Article  CAS  Google Scholar 

  174. Yi F, Zheng J, Li Q, et al. Inhibition of chitin oligosaccharide on dyslipidemia and the potential molecular mechanism exploration. Sheng Wu Gong Cheng Xue Bao Chin J Biotechnol. 2017;33(4):630–41. https://doi.org/10.13345/j.cjb.160482.

    Article  CAS  Google Scholar 

  175. Wu X, Wang J, Shi Y, et al. N-Acetyl-chitobiose ameliorates metabolism dysfunction through Erk/p38 MAPK and histone H3 phosphorylation in type 2 diabetes mice. J Funct Foods. 2017;28:96–105. https://doi.org/10.1016/j.jff.2016.11.012.

    Article  CAS  Google Scholar 

  176. Huang L, Chen J, Cao P, et al. Anti-obese effect of glucosamine and chitosan oligosaccharide in high-fat diet-induced obese rats. Mar Drugs. 2015;13(5):2732–56. https://doi.org/10.3390/md13052732.

    Article  CAS  Google Scholar 

  177. Wang X, Wang X, Jiang H, et al. Marine polysaccharides attenuate metabolic syndrome by fermentation products and altering gut microbiota: an overview. Carbohydr Polym. 2018;195:601–12. https://doi.org/10.1016/j.carbpol.2018.05.003.

    Article  CAS  Google Scholar 

  178. Tao W, Wang G, Wei J. The role of chitosan oligosaccharide in metabolic syndrome: a review of possible mechanisms. Mar Drugs. 2021;19(9):501. https://doi.org/10.3390/md19090501.

    Article  CAS  Google Scholar 

  179. Pan H, Fu C, Huang L, et al. Anti-obesity effect of chitosan oligosaccharide capsules (COSCs) in obese rats by ameliorating leptin resistance and adipogenesis. Mar Drugs. 2018;16(6):198. https://doi.org/10.3390/md16060198.

    Article  CAS  Google Scholar 

  180. Tao W, Sun W, Liu L, et al. Chitosan oligosaccharide attenuates nonalcoholic fatty liver disease induced by high fat diet through reducing lipid accumulation, inflammation and oxidative stress in C57BL/6 mice. Mar Drugs. 2019;17(11):645. https://doi.org/10.3390/md17110645.

    Article  CAS  Google Scholar 

  181. Zhao M, Shen X, Li X, et al. Chitooligosaccharide supplementation prevents the development of high fat diet-induced non-alcoholic fatty liver disease (NAFLD) in mice via the inhibition of cluster of differentiation 36 (CD36). J Funct Foods. 2019;57:7–18. https://doi.org/10.1016/j.jff.2019.03.048.

    Article  CAS  Google Scholar 

  182. Meng Q-Y, Wang H, Cui Z-B, Yu W-G, Lu X-Z. Chitosan oligosaccharides attenuate amyloid formation of hIAPP and protect pancreatic β-cells from cytotoxicity. Molecules. 2020;25(6):1314. https://doi.org/10.3390/molecules25061314.

    Article  CAS  Google Scholar 

  183. Zhao L, Zheng Q, Zou Y, Wang Y, Wu Y, Liu X. Chitooligosaccharide biguanidine alleviates liver injury and insulin resistance in type 2 diabetic rats. Starch-Stärke. 2020;72(1–2):1900203. https://doi.org/10.1002/star.201900203.

    Article  CAS  Google Scholar 

  184. Yu SY, Kwon YI, Lee C, Apostolidis E, Kim YC. Antidiabetic effect of chitosan oligosaccharide (GO2KA1) is mediated via inhibition of intestinal alpha-glucosidase and glucose transporters and PPARγ expression. BioFactors. 2017;43(1):90–9. https://doi.org/10.1002/biof.1311.

    Article  CAS  Google Scholar 

  185. Yang Y, Xing R, Liu S, et al. Immunostimulatory effects of sulfated chitosans on RAW 264.7 mouse macrophages via the activation of PI3 K/Akt signaling pathway. Int J Biol Macromol. 2018;108:1310–21. https://doi.org/10.1016/j.ijbiomac.2017.11.042.

    Article  CAS  Google Scholar 

  186. Yang Y, Xing R, Liu S, et al. Immunostimulatory effects of chitooligosaccharides on RAW 264.7 mouse macrophages via regulation of the MAPK and PI3K/Akt signaling pathways. Mar Drugs. 2019;17(1):36. https://doi.org/10.3390/md17010036.

    Article  CAS  Google Scholar 

  187. Yu M, Meng T, He W, et al. Dietary chito-oligosaccharides improve intestinal immunity via regulating microbiota and Th17/Treg balance-related immune signaling in piglets challenged by enterotoxigenic E. coli. J Agric Food Chem. 2021;69(50):15195–207. https://doi.org/10.1021/acs.jafc.1c06029.

    Article  CAS  Google Scholar 

  188. Suzuki K, Tokoro A, Okawa Y, Suzuki S, Suzuki M. Effect of N-acetylchito-oligosaccharides on activation of phagocytes. Microbiol Immunol. 1986;30(8):777–87. https://doi.org/10.1111/j.1348-0421.1986.tb03004.x.

    Article  CAS  Google Scholar 

  189. Kobayashi M, Watanabe T, Suzuki S, Suzuki M. Effect of N-acetylchitohexaose against Candida albicans infection of tumor-bearing mice. Microbiol Immunol. 1990;34(5):413–26. https://doi.org/10.1111/j.1348-0421.1990.tb01024.x.

    Article  CAS  Google Scholar 

  190. Okawa Y, Kobayashi M, Suzuki S, Suzuki M. Comparative study of protective effects of chitin, chitosan, and N-acetyl chitohexaose against Pseudomonas aeruginosa and Listeria monocytogenes infections in mice. Biol Pharm Bull. 2003;26(6):902–4. https://doi.org/10.1248/bpb.26.902.

    Article  CAS  Google Scholar 

  191. Shang X, He X, Liu H, et al. Stachyose prevents intestinal mucosal injury in the immunosuppressed mice. Starch-Stärke. 2020;72(11–12):1900073. https://doi.org/10.1002/star.201900073.

    Article  CAS  Google Scholar 

  192. Lieder R, Thormodsson F, Ng C-H, et al. Chitosan and chitin hexamers affect expansion and differentiation of mesenchymal stem cells differently. Int J Biol Macromol. 2012;51(4):675–80. https://doi.org/10.1016/j.ijbiomac.2012.07.005.

    Article  CAS  Google Scholar 

  193. Zheng B, Wen Z-S, Huang Y-J, Xia M-S, Xiang X-W, Qu Y-L. Molecular weight-dependent immunostimulative activity of low molecular weight chitosan via regulating NF-KB and AP-1 signaling pathways in RAW264.7 macrophages. Mar Polysaccharides. 2018;2(2):1. https://doi.org/10.3390/md14090169.

    Article  CAS  Google Scholar 

  194. Deng J-J, Li Z-Q, Mo Z-Q, et al. Immunomodulatory effects of N-Acetyl chitooligosaccharides on RAW264.7 macrophages. Mar Drugs. 2020;18(8):421. https://doi.org/10.3390/md18080421.

    Article  CAS  Google Scholar 

  195. Jiang Z, Liu G, Yang Y, et al. N-Acetyl chitooligosaccharides attenuate amyloid β-induced damage in animal and cell models of Alzheimer’s disease. Process Biochem. 2019;84:161–71. https://doi.org/10.1016/j.procbio.2019.06.014.

    Article  CAS  Google Scholar 

  196. Hu H, Xia H, Zou X, et al. N-acetyl-chitooligosaccharide attenuates inflammatory responses by suppression of NF-κB signaling, MAPK and NLRP3 inflammasome in macrophages. J Funct Foods. 2021;78:104364. https://doi.org/10.1016/j.jff.2021.104364.

    Article  CAS  Google Scholar 

  197. Xu Q, Liu M, Liu Q, Wang W, Du Y, Yin H. The inhibition of LPS-induced inflammation in RAW264.7 macrophages via the PI3K/Akt pathway by highly N-acetylated chitooligosaccharide. Carbohydr Polym. 2017;174:1138–43. https://doi.org/10.1016/j.carbpol.2017.07.051.

    Article  CAS  Google Scholar 

  198. Lin C-W, Chen L-J, Lee P-L, Lee C-I, Lin J-C, Chiu J-J. The inhibition of TNF-α-induced E-selectin expression in endothelial cells via the JNK/NF-κB pathways by highly N-acetylated chitooligosaccharides. Biomaterials. 2007;28(7):1355–66. https://doi.org/10.1016/j.biomaterials.2006.11.006.

    Article  CAS  Google Scholar 

  199. Behera HT, Mojumdar A, Das SR, Jema S, Ray L. Production of N-acetyl chitooligosaccharide by novel Streptomyces chilikensis strain RC1830 and its evaluation for anti-radical, anti-inflammatory, anti-proliferative and cell migration potential. Bioresour Technol Rep. 2020;11:100428. https://doi.org/10.1016/j.biteb.2020.100428.

    Article  Google Scholar 

  200. Vo T-S, Ngo D-H, Van Ta Q, Wijesekara I, Kong C-S, Kim S-K. Protective effect of chitin oligosaccharides against lipopolysaccharide-induced inflammatory response in BV-2 microglia. Cell Immunol. 2012;277(1–2):14–21. https://doi.org/10.1016/j.cellimm.2012.06.005.

    Article  CAS  Google Scholar 

  201. Santos-Moriano P, Kidibule P, Míguez N, et al. Tailored enzymatic synthesis of chitooligosaccharides with different deacetylation degrees and their anti-inflammatory activity. Catalysts. 2019;9(5):405. https://doi.org/10.3390/catal9050405.

    Article  CAS  Google Scholar 

  202. Sánchez Á, Mengíbar M, Fernández M, Alemany S, Heras A, Acosta N. Influence of preparation methods of chitooligosaccharides on their physicochemical properties and their anti-inflammatory effects in mice and in RAW264.7 macrophages. Mar Drugs. 2018;16(11):430. https://doi.org/10.3390/md16110430.

    Article  CAS  Google Scholar 

  203. Cao R, Yu H, Long H, et al. Low deacetylation degree chitosan oligosaccharide protects against IL-1β induced inflammation and enhances autophagy activity in human chondrocytes. J Biomater Sci Polym Ed. 2022;33(4):517–31. https://doi.org/10.1080/09205063.2021.1996962.

    Article  CAS  Google Scholar 

  204. Huang R, Mendis E, Rajapakse N, Kim SK. Strong electronic charge as an important factor for anticancer activity of chitooligosaccharides (COS). Life Sci. 2006;78(20):2399–408. https://doi.org/10.1016/j.lfs.2005.09.039.

    Article  CAS  Google Scholar 

  205. Zhai XC, Li CN, Ren DF, Wang J, Ma C, Abd El-Aty AM. The impact of chitooligosaccharides and their derivatives on the in vitro and in vivo antitumor activity: a comprehensive review. Carbohyd Polym. 2021;266:13. https://doi.org/10.1016/j.carbpol.2021.118132.

    Article  CAS  Google Scholar 

  206. Wu M, Li J, An Y, et al. Chitooligosaccharides prevents the development of colitis-associated colorectal cancer by modulating the intestinal microbiota and mycobiota. Front Microbiol. 2019;10:2101. https://doi.org/10.3389/fmicb.2019.02101.

    Article  Google Scholar 

  207. Zhu C, Zhao M, Fan L, et al. Chitopentaose inhibits hepatocellular carcinoma by inducing mitochondrial mediated apoptosis and suppressing protective autophagy. Bioresour Bioprocess. 2021;8(1):1–12. https://doi.org/10.1186/s40643-020-00358-y.

    Article  CAS  Google Scholar 

  208. Lee HL, Choi CW, Kim J, et al. Antimetastatic activity of gallic acid-conjugated chitosan against pulmonary metastasis of colon carcinoma cells. Bull Korean Chem Soc. 2018;39(1):90–6. https://doi.org/10.1002/bkcs.11351.

    Article  CAS  Google Scholar 

  209. Tokoro A, Tatewaki N, Mikami T, Suzuki S, Suzuki M. Effect of NACOS-6 on lymphokine-activated killer cell (LAK) activity. Biotherapy. 1989;3:51–4.

    Google Scholar 

  210. Chen J, Zhou Z, Zheng C, et al. Chitosan oligosaccharide regulates AMPK and STAT1 pathways synergistically to mediate PD-L1 expression for cancer chemoimmunotherapy. Carbohyd Polym. 2022;277: 118869. https://doi.org/10.1016/j.carbpol.2021.118869.

    Article  CAS  Google Scholar 

  211. Naveed M, Phil L, Sohail M, et al. Chitosan oligosaccharide (COS): an overview. Int J Biol Macromol. 2019;129:827–43. https://doi.org/10.1016/j.ijbiomac.2019.01.192.

    Article  CAS  Google Scholar 

  212. Benchamas G, Huang G, Huang S, Huang H. Preparation and biological activities of chitosan oligosaccharides. Trends Food Sci Technol. 2021;107:38–44. https://doi.org/10.1016/j.tifs.2020.11.027.

    Article  CAS  Google Scholar 

  213. Mattaveewong T, Wongkrasant P, Chanchai S, Pichyangkura R, Chatsudthipong V, Muanprasat C. Chitosan oligosaccharide suppresses tumor progression in a mouse model of colitis-associated colorectal cancer through AMPK activation and suppression of NF-κB and mTOR signaling. Carbohydr Polym. 2016;145:30–6. https://doi.org/10.1016/j.carbpol.2016.02.077.

    Article  CAS  Google Scholar 

  214. Muanprasat C, Wongkrasant P, Satitsri S, et al. Activation of AMPK by chitosan oligosaccharide in intestinal epithelial cells: mechanism of action and potential applications in intestinal disorders. Biochem Pharmacol. 2015;96(3):225–36. https://doi.org/10.1016/j.bcp.2015.05.016.

    Article  CAS  Google Scholar 

  215. Salmiheimo A, Mustonen H, Vainionpaa S, et al. Tumour-associated macrophages activate migration and STAT3 in pancreatic ductal adenocarcinoma cells in co-cultures. Pancreatology. 2017;17(4):635–41. https://doi.org/10.1016/j.pan.2017.04.013.

    Article  CAS  Google Scholar 

  216. Zou P, Yuan S, Yang X, Zhai X, Wang J. Chitosan oligosaccharides with degree of polymerization 2–6 induces apoptosis in human colon carcinoma HCT116 cells. Chemico-Biol Interact. 2018;279:129–35. https://doi.org/10.1016/j.cbi.2017.11.010.

    Article  CAS  Google Scholar 

  217. Zhai X, Yuan S, Yang X, et al. Growth-inhibition of S180 residual-tumor by combination of cyclophosphamide and chitosan oligosaccharides in vivo. Life Sci. 2018;202:21–7. https://doi.org/10.1016/j.lfs.2018.04.004.

    Article  CAS  Google Scholar 

  218. Pan Z, Cheng D-D, Wei X-J, Li S-J, Guo H, Yang Q-C. Chitooligosaccharides inhibit tumor progression and induce autophagy through the activation of the p53/mTOR pathway in osteosarcoma. Carbohydr Polym. 2021;258:117596. https://doi.org/10.1016/j.carbpol.2020.117596.

    Article  CAS  Google Scholar 

  219. Zhao M, Gu L, Li Y, et al. Chitooligosaccharides display anti-tumor effects against human cervical cancer cells via the apoptotic and autophagic pathways. Carbohydr Polym. 2019;224:115171. https://doi.org/10.1016/j.carbpol.2019.115171.

    Article  CAS  Google Scholar 

  220. Wang Z, Zheng L, Yang S, Niu R, Chu E, Lin X. N-acetylchitooligosaccharide is a potent angiogenic inhibitor both in vivo and in vitro. Biochem Biophys Res Commun. 2007;357(1):26–31. https://doi.org/10.1016/j.bbrc.2007.03.094.

    Article  CAS  Google Scholar 

  221. Wu M, Li J, An Y, et al. Chitooligosaccharides prevents the development of colitis-associated colorectal cancer by modulating the intestinal microbiota and mycobiota. Front Microbiol. 2019. https://doi.org/10.3389/fmicb.2019.02101.

    Article  Google Scholar 

  222. Másson M. Antimicrobial properties of chitosan and its derivatives. Chitosan for biomaterials III. Heidelberg: Springer; 2021. p. 131–68.

    Google Scholar 

  223. Sahariah P, Cibor D, Zielińska D, Hjálmarsdóttir MÁ, Stawski D, Másson M. The effect of molecular weight on the antibacterial activity of N, N, N-trimethyl chitosan (TMC). Int J Mol Sci. 2019;20(7):1743. https://doi.org/10.3390/ijms20071743.

    Article  CAS  Google Scholar 

  224. Attjioui M, Gillet D, El Gueddari NE, Moerschbacher BM. Synergistic antimicrobial effect of chitosan polymers and oligomers. Mol Plant Microbe Interact. 2021;34(7):770–8. https://doi.org/10.1094/MPMI-07-20-0185-R.

    Article  CAS  Google Scholar 

  225. Romanazzi G, Feliziani E, Santini M, Landi L. Effectiveness of postharvest treatment with chitosan and other resistance inducers in the control of storage decay of strawberry. Postharvest Biol Technol. 2013;75:24–7. https://doi.org/10.1016/j.postharvbio.2012.07.007.

    Article  CAS  Google Scholar 

  226. Grande-Tovar CD, Chaves-López C, Serio A, Rossi C, Paparella A. Chitosan coatings enriched with essential oils: Effects on fungi involved in fruit decay and mechanisms of action. Trends Food Sci Technol. 2018;78:61–71. https://doi.org/10.1016/j.tifs.2018.05.019.

    Article  CAS  Google Scholar 

  227. Yu L, Zong Y, Han Y, et al. Both chitosan and chitooligosaccharide treatments accelerate wound healing of pear fruit by activating phenylpropanoid metabolism. Int J Biol Macromol. 2022;205:483–90. https://doi.org/10.1016/j.ijbiomac.2022.02.098.

    Article  CAS  Google Scholar 

  228. Jiang L, Wang F, Xie X, et al. Development and characterization of chitosan/guar gum active packaging containing walnut green husk extract and its application on fresh-cut apple preservation. Int J Biol Macromol. 2022;209:1307–18. https://doi.org/10.1016/j.ijbiomac.2022.04.145.

    Article  CAS  Google Scholar 

  229. He Y, Bose SK, Wang W, Jia X, Lu H, Yin H. Pre-harvest treatment of chitosan oligosaccharides improved strawberry fruit quality. Int J Mol Sci. 2018;19(8):2194. https://doi.org/10.3390/ijms19082194.

    Article  CAS  Google Scholar 

  230. Paz MJ, Vieira T, Enzweiler H, Paulino AT. Chitosan/wood sawdust/magnetite composite membranes for the photodegradation of agrochemicals in water. J Environ Chem Eng. 2022;10(1):106967. https://doi.org/10.1016/j.jece.2021.106967.

    Article  CAS  Google Scholar 

  231. Ma Z, Yang L, Yan H, Kennedy JF, Meng X. Chitosan and oligochitosan enhance the resistance of peach fruit to brown rot. Carbohydr Polym. 2013;94(1):272–7. https://doi.org/10.1016/j.carbpol.2013.01.012.

    Article  CAS  Google Scholar 

  232. Wen X, Zhang D, Li X, et al. Dynamic changes of bacteria and screening of potential spoilage markers of lamb in aerobic and vacuum packaging. Food Microbiol. 2022;104:103996. https://doi.org/10.1016/j.fm.2022.103996.

    Article  CAS  Google Scholar 

  233. Georgantelis D, Ambrosiadis I, Katikou P, Blekas G, Georgakis SA. Effect of rosemary extract, chitosan and α-tocopherol on microbiological parameters and lipid oxidation of fresh pork sausages stored at 4 C. Meat Sci. 2007;76(1):172–81. https://doi.org/10.1016/j.meatsci.2006.10.026.

    Article  CAS  Google Scholar 

  234. Jo C, Lee JW, Lee KH, Byun MW. Quality properties of pork sausage prepared with water-soluble chitosan oligomer. Meat Sci. 2001;59(4):369–75. https://doi.org/10.1016/s0309-1740(01)00089-4.

    Article  CAS  Google Scholar 

  235. Rao MS, Chander R, Sharma A. Synergistic effect of chitooligosaccharides and lysozyme for meat preservation. LWT-Food Sci Technol. 2008;41(10):1995–2001. https://doi.org/10.1016/j.lwt.2008.01.013.

    Article  CAS  Google Scholar 

  236. Boonviset P, Pirak T. Physicochemical and sensory characteristics of reduced fat-low sugar Chinese pork sausage as produced by chitooligosaccharide using commercial pectinase hydrolysis. Int J Food Prop. 2020;23(1):22–33. https://doi.org/10.1080/10942912.2019.1702998.

    Article  CAS  Google Scholar 

  237. Naberezhnykh G, Gorbach V, Kalmykova E, Soloveva T. Determination of the parameters of binding between lipopolysaccharide and chitosan and its N-acetylated derivative using a gravimetric piezoquartz biosensor. Biophys Chem. 2015;198:9–13. https://doi.org/10.1016/j.bpc.2015.01.003.

    Article  CAS  Google Scholar 

  238. Cao S, Liu Y, Shi L, Zhu W, Wang H. N-Acetylglucosamine as a platform chemical produced from renewable resources: opportunity, challenge, and future prospects. Green Chem. 2022. https://doi.org/10.1039/D1GC03725K.

    Article  Google Scholar 

  239. Kaczmarek MB, Struszczyk-Swita K, Li XK, Szczesna-Antczak M, Daroch M. Enzymatic modifications of chitin, chitosan, and chitooligosaccharides. Front Bioeng Biotechnol. 2019;7:26. https://doi.org/10.3389/fbioe.2019.00243.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the National Key R&D Program of China (2019YFD0901805), the 111 Project (B18022), the Fundamental Research Funds for the Central Universities, the Open Project Funding of the State Key Laboratory of Bioreactor Engineering, ECUST (ZDXM2019), and Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism (Shanghai Municipal Education Commission).

Funding

This work was supported by the National Key R&D Program of China (2019YFD0901805), the 111 Project (B18022), the Fundamental Research Funds for the Central Universities, the Open Project Funding of the State Key Laboratory of Bioreactor Engineering, ECUST (ZDXM2019), and Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism (Shanghai Municipal Education Commission).

Author information

Authors and Affiliations

Authors

Contributions

RZ drew the outline. RZ, QZ, and ZY drafted the manuscript. RZ, QZ, ZY, KZ, JS, LZ, and YC collected data and constructed the figures and tables. JJ revised the manuscript. LZ conceived the concept and gave advice throughout the draft of this manuscript. All the authors reviewed and approved the manuscript.

Corresponding authors

Correspondence to Jiayang Jin or Liming Zhao.

Ethics declarations

Conflict of interest

All the authors declare that there was no conflict of financial interest.

Ethics approval

This article does not contain any studies conducted by any of the authors on human participants or animals.

Consent for publication

All authors agree to the publishing of this paper.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Zhao, Q., Yi, Z. et al. Chitin oligosaccharides for the food industry: production and applications. Syst Microbiol and Biomanuf 3, 49–74 (2023). https://doi.org/10.1007/s43393-022-00127-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-022-00127-2

Keywords

Navigation