Skip to main content
Log in

Constitutive expression of codon optimized Trichoderma reesei TrCel5A in Pichia pastoris using GAP promoter

  • Original Article
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

To address the deficient activity of TrCel5A in naturally secreted cellulase preparation, this study used the GAP promoter to induce constitutive expression of Trichoderma reesei TrCel5A in Pichia pastoris. A recombinant TrCel5A was screened out after gene optimization, synthesis, and expression. The biochemical and enzymatic properties of the new recombinant were characterized. As a result, optimization of shake-flask fermentation of the recombinant was obtained at 28 °C, 2% inoculum volume, an initial pH of 6.0, as well as glycerol and Tween-80 additions of 30 g/L and 6 g/L, respectively. Under the above-optimized conditions, the recombinant produced 14.8 U/mL of the enzyme activity at 96 h of fermentation. To further enhance enzyme production, pilot-scale cultivation was evaluated using 5-L bioreactors. Using high-cell-density fermentation, the recombinant strain increased enzyme activity to 130.4 U/ml and protein content to 2.49 g/L. In addition, the kinetic factors, including Km and Vmax values for TrCel5A, were detected to be 5.1 mg/mL and 265.9 μmol/(min.mg), respectively. Thus, TrCel5A was effectively expressed in P.pastoris under the GAP promoter, and it demonstrated its potential in commercially relevant enzyme hydrolysis of lignocellulosic biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dadwal A, Sharma S, Satyanarayana T. Progress in ameliorating beneficial characteristics of microbial cellulases by genetic engineering approaches for cellulose saccharification. Front Microbiol. 2020;11:1387.

    Article  Google Scholar 

  2. Ding SY, Liu YS, Zeng YN, Himmel ME, Baker JO, Bayer EA. How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science. 2012;338:1055.

    Article  CAS  Google Scholar 

  3. Aditiya HB, Mahlia TM, Chong WT, Nur H, Sebayang AH. Second generation bioethanol production: a critical review. Renew Sustain Energ Rev. 2016;66:631–53.

    Article  CAS  Google Scholar 

  4. Ma J, Shi S, Jia X, Xia F, Ma H, Gao J, Xu J. Advances in catalytic conversion of lignocellulose to chemicals and liquid fuels. J Energ Chem. 2019;36:74–86.

    Article  Google Scholar 

  5. Marriott PE, Gomez LD, McQueen-Mason SJ. Unlocking the potential of lignocellulosic biomass through plant science. New Phytol. 2016;209(4):1366–81.

    Article  CAS  Google Scholar 

  6. Chukwuma OB, Rafatullah M, Tajarudin HA, Ismail N. Lignocellulolytic enzymes in biotechnological and industrial processes: a review. Sustainability. 2020;12:7282.

    Article  CAS  Google Scholar 

  7. Mukasekuru MR, Hu JG, Zhao XQ, Sun FB, Pascal K, Ren HY, Zhang JH. Enhanced high-solids fed-batch enzymatic hydrolysis of sugar cane bagasse with accessory enzymes and additives at low cellulose loading. ACS Sustain Chem Eng. 2018;6:12787–96.

    Article  CAS  Google Scholar 

  8. Chokhawala HA, Roche CM, Kim T-W, Atreya ME, Vegesna N, Dana CM, Blanch HW, Clark DS. Mutagenesis of Trichoderma reesei endoglucanase I: impact of expression host on activity and stability at elevated temperatures. BMC Biotechnol. 2015;15(1):1–12.

    Article  Google Scholar 

  9. Liu RY, Hou YH, Wang YF, Qian YC, Zhong YH. Effects of VPS13 deletion on hyphal branch, sporulation and cellulose production in Trichoderma reesei. Acta Microbiol Sin. 2017;57(10):1555–66 ((in Chinese)).

    CAS  Google Scholar 

  10. Rosgaard L, Pedersen S, Langston J, Akerhielm D, Cherry JR, Meyer AS. Evaluation of minimal Trichoderma reesei cellulase mixtures on differently pretreated barley straw substrates. Biotechnol Progr. 2007;23(6):1270–6.

    Article  CAS  Google Scholar 

  11. Yennamalli RM, Rader AJ, Kenny AJ, Wolt JD, Sen TZ. Endoglucanases: insights into thermostability for biofuel applications. Biotechnol Biofuels. 2013;6:136.

    Article  CAS  Google Scholar 

  12. Sharma A, Tewari R, Rana SS, Soni R, Soni SK. Cellulases: classification, methods of determination and industrial applications. Appl Biochem Biotechnol. 2016;179:1346–80. https://doi.org/10.1007/s12010-016-2070-3.

    Article  CAS  PubMed  Google Scholar 

  13. Nakazawa H, Okada K, Kobayashi R, Kubota T, Onodera T, Ochiai N, Omata N, Ogasawara W, Okada H, Morikawa Y. Characterization of the catalytic domains of Trichoderma reesei endoglucanase I, II, and III, expressed in Escherichia coli. Appl Microbiol Biotechnol. 2008;81(4):681–9.

    Article  CAS  Google Scholar 

  14. Boonvitthya N, Bozonnet S, Burapatana V, O’Donohue MJ, Chulalaksananukul W. Comparison of the heterologous expression of Trichoderma reesei endoglucanase II and cellobiohydrolase II in the yeasts Pichia pastoris and Yarrowia lipolytica. Mol Biotechnol. 2013;54(2):158–69.

    Article  CAS  Google Scholar 

  15. Du Plessis L, Rose SH, van Zyl WH. Exploring improved endoglucanase expression in Saccharomyces cerevisiae strains. Appl Microbiol Biotechnol. 2010;86(5):1503–11.

    Article  CAS  Google Scholar 

  16. Cereghino GPL, Cregg JM. Applications of yeast in biotechnology: protein production and genetic analysis. Curr Opin Biotechnol. 1999;10(5):422–7.

    Article  CAS  Google Scholar 

  17. Cregg JM, Vedvick TS, Raschke WC. Recent advances in the expression of foreign genes in Pichia pastoris. Nat Biotechnol. 1993;11(8):905–10.

    Article  CAS  Google Scholar 

  18. Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM. Heterologous protein production using the Pichia pastoris expression system. Yeast. 2005;22(4):249–70.

    Article  CAS  Google Scholar 

  19. Waterham HR, Digan ME, Koutz PJ, et al. Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene. 1997;186:37–44.

    Article  CAS  Google Scholar 

  20. Sears IB, O’Connor J, Rossanese OW, et al. A versatile set of vectors for constitutive and regulated gene expression in Pichia pastoris. Yeast. 1998;14:783–90.

    Article  CAS  Google Scholar 

  21. Vogl T, Glieder A. Regulation of Pichia pastoris promoters and its consequences for protein production. New Biotechnol. 2013;30(4):385–404.

    Article  CAS  Google Scholar 

  22. Varnai A, Tang C, Bengtsson O, Atterton A, Mathiesen G, Eijsink VG. Expression of endoglucanases in Pichia pastoris under control of the GAP promoter. Microb Cell Fac. 2014;13:57.

    Article  Google Scholar 

  23. Bai RH, Zhang YB, Wang CD, Zhang FY, Zhang Z, Sun FB, Zhang ZY. Gene optimization and efficient expression of Trichoderma reesei Cel5A in Pichia pastoris. Chin J Biotechnol. 2016;32(10):1381–94.

    CAS  Google Scholar 

  24. Yu Q, Aijun M, Yongzhi H, Weifeng L, Zhiyang D. Secreted expression of Trichoderma reesei endo-β-glucanase II gene in Pichia pastoris and anylysis of enzymic properties. Mycosystema. 2004;23(3):388–96.

    Google Scholar 

  25. Zheng HY, Cai SL, Huang P, Yang H, Zhang AP, Liu XL, Huang JZ. Optimization of fermentation conditions for neutral endoglucanase EGII. J Microbiol. 2012;32(1):12–6.

    CAS  Google Scholar 

  26. Samanta S, Basu A, Halder UC, Sen SK. Characterization of Trichoderma reesei endoglucanase II expressed heterologously in Pichia pastoris for better biofinishing and biostoning. J Microbiol. 2012;50(3):518–25.

    Article  CAS  Google Scholar 

  27. Akbarzadeh A, Siadat SOR, Motallebi M, Zamani MR, Tashnizi MB, Moshtaghi S. Characterization and high level expression of acidic endoglucanase in Pichia pastoris. Appl Biochem Biotechnol. 2014;172(4):2253–65.

    Article  CAS  Google Scholar 

  28. Akcapinar GB, Gul O, Sezerman U. Effect of codon optimization on the expression of Trichoderma reesei endoglucanase 1 in Pichia pastoris. Biotechnol Progr. 2011;27(5):1257–63.

    Article  CAS  Google Scholar 

  29. Cruz-Vera LR, Magos-Castro MA, Zamora-Romo E, Guarneros G. Ribosome stalling and peptidyl-tRNA drop-off during translational delay at AGA codons. Nucleic Acids Res. 2004;32(15):4462–8.

    Article  CAS  Google Scholar 

  30. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31:426–8.

    Article  CAS  Google Scholar 

  31. Mellitzer A, Weis R, Glieder A, Flicker K. Expression of lignocellulolytic enzymes in Pichia pastoris. Microb Cell Fac. 2012;11:172–83.

    Google Scholar 

  32. Miettinen-Oinonen A, Suominen P. Enhanced production of Trichoderma reesei endoglucanases and use of the new cellulase preparations in producing the stonewashed effect on denim fabric. Appl Environ Microbiol. 2002;68(8):3956–64.

    Article  CAS  Google Scholar 

  33. Sadaf S, Arshad H, Akhtar MW. A non-ionic surfactant reduces the induction time and enhances expression levels of bubaline somatotropin in Pichia pastoris. Mol Biol Rep. 2014;41(2):855–63.

    Article  CAS  Google Scholar 

  34. Riesenberg D, Guthke R. High-cell-density cultivation of microorganisms. Appl Microbiol Biotechnol. 1999;51:422–30.

    Article  CAS  Google Scholar 

  35. Lu YH, Fang C, Wang QH, Zhou YL, Zhang GM, Ma YH. High-level expression of improved thermos-stable alkaline xylanase variant in Pichia pastoris through codon optimization, multiple gene insertion and high-density fermentation. Sci Rep. 2016;6:37869.

    Article  Google Scholar 

  36. Saloheimo M, Lehtovaara P, Penttila M, Teeri TT, Stahlberg J, Johansson G, Pettersson G, Claeyssens M, Tomme P, Knowles JKC. EGIII, a new endoglucanase from Trichoderma reesei: the characterization of both gene and enzyme. Gene. 1988;63(1):11–22.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2019YFE0114600), National Natural Science Foundation of China (21776114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fubao Sun.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Bai, R., Dou, S. et al. Constitutive expression of codon optimized Trichoderma reesei TrCel5A in Pichia pastoris using GAP promoter. Syst Microbiol and Biomanuf 2, 498–506 (2022). https://doi.org/10.1007/s43393-021-00071-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-021-00071-7

Keywords

Navigation