Skip to main content
Log in

Sagittal spinopelvic alignment in ambulatory persons with cerebral palsy

  • Case Series
  • Published:
Spine Deformity Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to describe the spinopelvic alignment of a cohort of young ambulatory individuals with cerebral palsy (CP) and compare it to published spinopelvic alignment data for the typically developing adolescents.

Methods

Thirty-seven adolescents (18 females) with CP at GMFCS I–III were included in this retrospective case series. Lumbar lordosis and pelvic incidence were measured, and their mismatch was calculated. A model that calculates predicted lumbar lordosis based on pelvic incidence in normative data was utilized to calculate a predicted lumbar lordosis in this cohort with cerebral palsy.

Results

At imaging, ages were mean and standard deviation 13.5 ± 3.0 years. Pelvic incidence was 46.2° ± 12.9°, pelvic tilt was 2.8° ± 9.4°, sacral slope was 43.6° ± 10.8°, and measured lumbar lordosis was 59.4° ± 11.6°. There were no differences in pelvic incidence or lumbar lordosis among the GMFCS levels; however, pelvic incidence was higher in females. Pelvic incidence–lumbar lordosis mismatch greater than 10° was found in 67% of the cohort. Mean predicted lumbar lordosis based on the model was 54.7° ± 8.5°, averaging 8° less than measured lordosis.

Conclusion

PI–LL mismatch was identified in 67% of this cohort of ambulatory adolescents with CP, in part due to greater lordosis than predicted by a model based on data from adolescents without CP. The implications of this finding, such as the correlation between sagittal spinopelvic alignment and quality of life in this population, should be assessed further in ambulatory patients with cerebral palsy.

Level of evidence

Level IV—retrospective cohort study and literature comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author, PRPS. The data are not publicly available due to their containing information that could compromise the privacy of research participants.

References

  1. Legaye J, Duval-Beaupère G, Hecquet J et al (1998) Pelvic incidence a fundamental pelvic parameter for 3D regulation of spinal sagittal curves. Eur Spine J 7:99–103. https://doi.org/10.1007/s005860050038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. During J, Goudfrooij H, Keessen W, Toward standards for posture, et al (1985) Postural characteristics of the lower back system in normal and pathologic conditions. Spine(Phila Pa 1976) 10:83–87

    Article  CAS  PubMed  Google Scholar 

  3. Duval-Beaupère G, Schmidt C, Cosson P (1992) A barycentremetric study of the sagittal shape of spine and pelvis: the conditions required for an economic standing position. Ann Biomed Eng 20:451–462

    Article  PubMed  Google Scholar 

  4. Legaye J (2013) The sagittal pelvic thickness: a determining parameter for the regulation of the sagittal spinopelvic balance. ISRN Anat 2013:364068. https://doi.org/10.5402/2013/364068

    Article  Google Scholar 

  5. Ike H, Bodner RJ, Lundergan W et al (2020) The effects of pelvic incidence in the functional anatomy of the hip joint. J Bone Joint Surg Am 102:991–999. https://doi.org/10.2106/JBJS.19.00300

    Article  PubMed  Google Scholar 

  6. Le Huec JC, Aunoble S, Philippe L et al (2011) Pelvic parameters: origin and significance. Eur Spine J 20:564–571. https://doi.org/10.1007/s00586-011-1940-1

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lovejoy CO (2005) The natural history of human gait and posture. Part 1. Spine and pelvis. Gait Posture 21:95–112. https://doi.org/10.1016/j.gaitpost.2004.01.001

    Article  PubMed  Google Scholar 

  8. Lovejoy CO (2005) The natural history of human gait and posture. Part 2. Hip and thigh. Gait Posture 21:113–124. https://doi.org/10.1016/j.gaitpost.2004.06.010

    Article  PubMed  Google Scholar 

  9. Bailey JF, Shefi S, Soudack M et al (2019) Development of pelvic incidence and lumbar lordosis in children and adolescents. Anat Rec (Hoboken) 302(12):2132–2139. https://doi.org/10.1002/ar.24209

    Article  PubMed  Google Scholar 

  10. Vialle R, Levassor N, Rillardon L et al (2005) Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. J Bone Joint Surg Am 87:260–267. https://doi.org/10.2106/jbjs.D.02043

    Article  PubMed  Google Scholar 

  11. Schwab F, Patel A, Ungar B et al (2010) Adult spinal deformity-postoperative standing imbalance: how much can you tolerate? An overview of key parameters in assessing alignment and planning corrective surgery. Spine(Phila Pa 1976) 35:2224–2231. https://doi.org/10.1097/BRS.0b013e3181ee6bd4

    Article  PubMed  Google Scholar 

  12. Jalai CM, Diebo BG, Cruz DL et al (2017) The impact of obesity on compensatory mechanisms in response to progressive sagittal malalignment. Spine J 17:681–688. https://doi.org/10.1016/j.spinee.2016.11.016

    Article  PubMed  Google Scholar 

  13. Cil A, Yazici M, Uzumcugil A et al (2005) The evolution of sagittal segmental alignment of the spine during childhood. Spine(Phila Pa 1976) 30:93–100

    Article  PubMed  Google Scholar 

  14. Inami S, Moridaira H, Takeuchi D et al (2016) Optimum pelvic incidence minus lumbar lordosis value can be determined by individual pelvic incidence. Eur Spine J 25:3638–3643. https://doi.org/10.1007/s00586-016-4563-8

    Article  PubMed  Google Scholar 

  15. Aoki Y, Nakajima A, Takahashi H et al (2015) Influence of pelvic incidence-lumbar lordosis mismatch on surgical outcomes of short-segment transforaminal lumbar interbody fusion. BMC Musculoskelet Disord 16:213. https://doi.org/10.1186/s12891-015-0676-1

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dreischarf M, Albiol L, Rohlmann A et al (2014) Age-related loss of lumbar spinal lordosis and mobility–a study of 323 asymptomatic volunteers. PLoS ONE 9(12):e116186. https://doi.org/10.1371/journal.pone.0116186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schwab FJ, Blondel B, Bess S et al (2013) Radiographical spinopelvic parameters and disability in the setting of adult spinal deformity: a prospective multicenter analysis. Spine(Phila Pa 1976) 38:E803-812. https://doi.org/10.1097/BRS.0b013e318292b7b9

    Article  PubMed  Google Scholar 

  18. Lafage V, Schwab F, Patel A et al (2009) Pelvic tilt and truncal inclination: two key radiographic parameters in the setting of adults with spinal deformity. Spine(Phila Pa 1976) 34:E599-606. https://doi.org/10.1097/BRS.0b013e3181aad219

    Article  PubMed  Google Scholar 

  19. Roussouly P, Pinheiro-Franco JL (2011) Biomechanical analysis of the spino-pelvic organization and adaptation in pathology. Eur Spine J 20:609–618. https://doi.org/10.1007/s00586-011-1928-x

    Article  PubMed  PubMed Central  Google Scholar 

  20. Galbusera F, Wilke HJ, Brayda-Bruno M et al (2013) Influence of sagittal balance on spinal lumbar loads: a numerical approach. Clin Biomech(Bristol, Avon) 28:370–377. https://doi.org/10.1016/j.clinbiomech.2013.02.006

    Article  PubMed  Google Scholar 

  21. Ames CP, Smith JS, Scheer JK et al (2012) Impact of spinopelvic alignment on decision making in deformity surgery in adults: a review. J Neurosurg Spine 16:547–564. https://doi.org/10.3171/2012.2.SPINE11320

    Article  PubMed  Google Scholar 

  22. Ilharreborde B, de Saint EA, Presedo A et al (2020) Spinal sagittal alignment and head control in patients with cerebral palsy. J Child Orthop 14:17–23. https://doi.org/10.1302/1863-2548.14.190160

    Article  PubMed  PubMed Central  Google Scholar 

  23. Borges PA, Ocampos GP, Mancuso Filho JA et al (2014) The sagital balance in idiopatic and neuromuscular collsiosis. Acta Orthop Bras 22(4):179–182. https://doi.org/10.1590/1413-78522014220400949

    Article  Google Scholar 

  24. Engel JM, Jensen MP, Hoffman AJ et al (2003) Pain in persons with cerebral palsy: extension and cross validation. Arch Phys Med Rehabil 84(8):1125–1128. https://doi.org/10.1016/s0003-9993(03)00263-6

    Article  PubMed  Google Scholar 

  25. Opheim A, Jahnsen R, Olsson E et al (2009) Walking function, pain, and fatigue in adults with cerebral palsy: a 7-year follow-up study. Dev Med Child Neurol 51:381–388. https://doi.org/10.1111/j.1469-8749.2008.03250.x

    Article  PubMed  Google Scholar 

  26. Palisano R, Rosenbaum P, Walter S et al (1997) Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol 39:214–223. https://doi.org/10.1111/j.1469-8749.1997.tb07414.x

    Article  CAS  PubMed  Google Scholar 

  27. Dubousset J, Charpak G, Skalli W et al (2008) Modélisation vertébrale et squelettique par le système EOS. Arch Pediatr 15:665–666. https://doi.org/10.1016/s0929-693x(08)71868-2

    Article  CAS  PubMed  Google Scholar 

  28. Buckland A, DelSole E, George S et al (2017) Sagittal pelvic orientation a comparison of two methods of measurement. Bull Hosp Jt Dis(2013) 75:234–240

    PubMed  Google Scholar 

  29. Sullivan TB, Marino N, Reighard FG et al (2018) Relationship between lumbar lordosis and pelvic incidence in the adolescent patient: normal cohort analysis and literature comparison. Spine Deform 6:529–536. https://doi.org/10.1016/j.jspd.2018.02.002

    Article  PubMed  Google Scholar 

  30. Senteler M, Weisse B, Snedeker JG et al (2014) Pelvic incidence-lumbar lordosis mismatch results in increased segmental joint loads in the unfused and fused lumbar spine. Eur Spine J 23:1384–1393. https://doi.org/10.1007/s00586-013-3132-7

    Article  PubMed  Google Scholar 

  31. Pesenti S, Lafage R, Stein D et al (2018) The amount of proximal lumbar lordosis is related to pelvic incidence. Clin Orthop Relat Res 476:1603–1611. https://doi.org/10.1097/CORR.0000000000000380

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mac-Thiong JM, Wang Z, de Guise JA et al (2008) Postural model of sagittal spino-pelvic alignment and its relevance for lumbosacral developmental spondylolisthesis. Spine(Phila Pa 1976) 33:2316–2325. https://doi.org/10.1097/BRS.0b013e318186b236

    Article  PubMed  Google Scholar 

  33. Basu S, Solanki A, Patel D et al (2021) Normal spino-pelvic parameters and correlation between lumbar lordosis (LL) and pelvic incidence (PI) in children and adolescents in Indian population. Spine Deform 9(4):941–948. https://doi.org/10.1007/s43390-020-00280-5

    Article  PubMed  Google Scholar 

  34. Hou C, Chen K, Chen Y et al (2021) Assessment of sagittal spinopelvic alignment in asymptomatic Chinese juveniles and adolescents: a large cohort study and comparative meta-analysis. J Orthop Surg Res 16(1):656. https://doi.org/10.1186/s13018-021-02773

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhang Y, Shu S, Gu Q et al (2022) Radiographic study of peak velocity of pelvic incidence in adolescent idiopathic scoliosis. Quant Imaging Med Surg 12(2):1130–1138. https://doi.org/10.21037/qims-21-391

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yong Q, Zhen L, Zezhang Z et al (2012) Comparison of sagittal spinopelvic alignment in Chinese adolescents with and without idiopathic thoracic scoliosis. Spine(Phila PA 1976) 37(12):E714–E720. https://doi.org/10.1097/BRS.0b013e3182444402

    Article  PubMed  Google Scholar 

  37. Bernard JC, Deceuninck J, Leroy-Coudeville S et al (2014) Motor function levels and pelvic parameters in walking or ambulating children with cerebral palsy. Ann Phys Rehabil Med 57:409–421. https://doi.org/10.1016/j.rehab.2014.06.004

    Article  PubMed  Google Scholar 

  38. Suh DH, Hong JY, Suh SW et al (2014) Analysis of hip dysplasia and spinopelvic alignment in cerebral palsy. Spine J 14:2716–2723. https://doi.org/10.1016/j.spinee.2014.03.025

    Article  PubMed  Google Scholar 

  39. Kerr Graham H, Selber P (2003) Musculoskeletal aspects of cerebral palsy. J Bone Joint Surg Br 85:157–166. https://doi.org/10.1302/0301-620x.85b2.14066

    Article  CAS  PubMed  Google Scholar 

  40. McCarthy J, Wade Shrader M, Graham K et al (2020) Establishing surgical indications for hamstring lengthening and femoral derotational osteotomy in ambulatory children with cerebral palsy. J Child Orthop 14:50–57. https://doi.org/10.1302/1863-2548.14.190173

    Article  PubMed  PubMed Central  Google Scholar 

  41. Haberfehlner H, Jaspers RT, Rutz E et al (2018) Outcome of medial hamstring lengthening in children with spastic paresis: a biomechanical and morphological observational study. PLoS ONE 13:e0192573. https://doi.org/10.1371/journal.pone.0192573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wolf SI, Mikut R, Kranzl A et al (2014) Which functional impairments are the main contributors to pelvic anterior tilt during gait in individuals with cerebral palsy? Gait Posture 39:359–364. https://doi.org/10.1016/j.gaitpost.2013.08.014

    Article  PubMed  Google Scholar 

  43. Wiley ME, Damiano DL (1998) Lower-extremity strength profiles in spastic cerebral palsy. Dev Med Child Neurol 40:100–107. https://doi.org/10.1111/j.1469-8749.1998.tb15369.x

    Article  CAS  PubMed  Google Scholar 

  44. Delp SL, Arnold AS, Speers RA et al (1996) Hamstrings and psoas lengths during normal and crouch gait: implications for muscle-tendon surgery. J Orthop Res 14:144–151. https://doi.org/10.1002/jor.1100140123

    Article  CAS  PubMed  Google Scholar 

  45. Hanson AM, Wren TAL, Rethlefsen SA et al (2023) Persistent increase in anterior pelvic tilt after hamstring lengthening in children with cerebral palsy. Gait Posture 103:184–189. https://doi.org/10.1016/j.gaitpost.2023.05.016

    Article  PubMed  Google Scholar 

  46. Tardieu C, Hasegawa K, Haeusler M (2017) How did the pelvis and vertebral column become a functional unit during the transition from occasional to permanent bipedalism? Anat Rec (Hoboken) 300:912–931. https://doi.org/10.1002/ar.23577

    Article  PubMed  Google Scholar 

  47. Dubousset J (2019) Spinal alignment, balance and harmony through the ages. Int J Orthop 2:19–24

    Google Scholar 

  48. Harada T, Ebara S, Anwar MM et al (1993) The lumbar spine in spastic diplegia. A radiographic study. J Bone Joint Surg Br 75:534–537. https://doi.org/10.1302/0301-620x.75b4.8331105

    Article  CAS  PubMed  Google Scholar 

  49. Thelen DG, Lenz AL, Francis C et al (2013) Empirical assessment of dynamic hamstring function during human walking. J Biomech 46:1255–1261. https://doi.org/10.1016/j.jbiomech.2013.02.019

    Article  PubMed  PubMed Central  Google Scholar 

  50. Rodda JM, Graham HK, Nattrass GR et al (2006) Correction of severe crouch gait in patients with spastic diplegia with use of multilevel orthopaedic surgery. J Bone Joint Surg Am 88:2653–2664. https://doi.org/10.2106/jbjs.E.00993

    Article  CAS  PubMed  Google Scholar 

  51. Haddas R, Sambhariya V, Kosztowski T et al (2021) Cone of economy classification: evolution, concept of stability, severity level, and correlation to patient-reported outcome scores. Eur Spine J 30:2271–2282. https://doi.org/10.1007/s00586-020-06678-z

    Article  PubMed  Google Scholar 

  52. Jahnsen R, Villien L, Aamodt G et al (2004) Musculoskeletal pain in adults with cerebral palsy compared with the general population. J Rehabil Med 36:78–84. https://doi.org/10.1080/16501970310018305

    Article  PubMed  Google Scholar 

  53. van der Slot WMA, Benner JL, Brunton L et al (2021) Pain in adults with cerebral palsy: a systematic review and meta-analysis of individual participant data. Ann Phys Rehabil Med 64:101359. https://doi.org/10.1016/j.rehab.2019.12.011

    Article  PubMed  Google Scholar 

Download references

Funding

The authors have no disclosures and wish to state that they have received no support or funding for this research project.

Author information

Authors and Affiliations

Authors

Contributions

Stephen Plachta: development of research aims, measurements, data interpretation, primary manuscript drafting, and approval of final manuscript. Sonya B. Levine: development of research aims, measurements, data interpretation, manuscript editing, and approval of final manuscript. Kirsten Carlberg: development of statistical methodology to test the research aims, statistical analysis, data interpretation, manuscript drafting, and final manuscript approval. Peter M. Cirrincione: development of research aims, data interpretation, manuscript editing, and final manuscript approval. Michael Vitale: development of research aims, data interpretation, final manuscript editing, and final manuscript approval. Lawrence G. Lenke: development of research aims, data interpretation, final manuscript editing, and final manuscript approval. Benjamin D Roye: development of research aims, measurements, data interpretation, final manuscript editing, and final manuscript approval. Paulo RP Selber: development of research aims, data interpretation, manuscript drafting, final manuscript editing, and final manuscript approval.

Corresponding author

Correspondence to Paulo R. P. Selber.

Ethics declarations

Ethical approval

This study was institutional review board approved.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plachta, S., Levine, S.B., Carlberg, K. et al. Sagittal spinopelvic alignment in ambulatory persons with cerebral palsy. Spine Deform (2024). https://doi.org/10.1007/s43390-024-00866-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43390-024-00866-3

Keywords

Navigation